原子序數為36的化學元素

(英語:Krypton),是一種化學元素,其化學符號Kr原子序數为36,原子量83.798 u,是一种无色、无臭、无味的稀有气体,把它放电时呈橙红色,在大气中含有痕量,可通过分馏从液态空气中分离,常用于制作荧光灯。氪正如其他惰性气体一样,不易与其他物质产生化学作用,已知的化合物有二氟化氪(KrF2)。

氪 36Kr
氫(非金屬)氦(惰性氣體)
鋰(鹼金屬)鈹(鹼土金屬)硼(類金屬)碳(非金屬)氮(非金屬)氧(非金屬)氟(鹵素)氖(惰性氣體)
鈉(鹼金屬)鎂(鹼土金屬)鋁(貧金屬)矽(類金屬)磷(非金屬)硫(非金屬)氯(鹵素)氬(惰性氣體)
鉀(鹼金屬)鈣(鹼土金屬)鈧(過渡金屬)鈦(過渡金屬)釩(過渡金屬)鉻(過渡金屬)錳(過渡金屬)鐵(過渡金屬)鈷(過渡金屬)鎳(過渡金屬)銅(過渡金屬)鋅(過渡金屬)鎵(貧金屬)鍺(類金屬)砷(類金屬)硒(非金屬)溴(鹵素)氪(惰性氣體)
銣(鹼金屬)鍶(鹼土金屬)釔(過渡金屬)鋯(過渡金屬)鈮(過渡金屬)鉬(過渡金屬)鎝(過渡金屬)釕(過渡金屬)銠(過渡金屬)鈀(過渡金屬)銀(過渡金屬)鎘(過渡金屬)銦(貧金屬)錫(貧金屬)銻(類金屬)碲(類金屬)碘(鹵素)氙(惰性氣體)
銫(鹼金屬)鋇(鹼土金屬)鑭(鑭系元素)鈰(鑭系元素)鐠(鑭系元素)釹(鑭系元素)鉕(鑭系元素)釤(鑭系元素)銪(鑭系元素)釓(鑭系元素)鋱(鑭系元素)鏑(鑭系元素)鈥(鑭系元素)鉺(鑭系元素)銩(鑭系元素)鐿(鑭系元素)鎦(鑭系元素)鉿(過渡金屬)鉭(過渡金屬)鎢(過渡金屬)錸(過渡金屬)鋨(過渡金屬)銥(過渡金屬)鉑(過渡金屬)金(過渡金屬)汞(過渡金屬)鉈(貧金屬)鉛(貧金屬)鉍(貧金屬)釙(貧金屬)砈(類金屬)氡(惰性氣體)
鍅(鹼金屬)鐳(鹼土金屬)錒(錒系元素)釷(錒系元素)鏷(錒系元素)鈾(錒系元素)錼(錒系元素)鈽(錒系元素)鋂(錒系元素)鋦(錒系元素)鉳(錒系元素)鉲(錒系元素)鑀(錒系元素)鐨(錒系元素)鍆(錒系元素)鍩(錒系元素)鐒(錒系元素)鑪(過渡金屬)𨧀(過渡金屬)𨭎(過渡金屬)𨨏(過渡金屬)𨭆(過渡金屬)䥑(預測為過渡金屬)鐽(預測為過渡金屬)錀(預測為過渡金屬)鎶(過渡金屬)鉨(預測為貧金屬)鈇(貧金屬)鏌(預測為貧金屬)鉝(預測為貧金屬)鿬(預測為鹵素)鿫(預測為惰性氣體)




外觀
无色气体,在高压电管中呈现白色和藍色光芒
概況
名稱·符號·序數氪(Krypton)·Kr·36
元素類別稀有气体
·週期·18·4·p
標準原子質量83.798(2)[1]
电子排布[Ar] 3d10 4s2 4p6
2, 8, 18, 8
氪的电子層(2, 8, 18, 8)
氪的电子層(2, 8, 18, 8)
歷史
發現威廉·拉姆齐 和 莫里斯·特拉弗斯(1898年)
分離威廉·拉姆齐 和 莫里斯·特拉弗斯(1898年)
物理性質
物態气态
密度(0 °C, 101.325 kPa
3.749 g/L
沸点時液體密度2.413[2] g·cm−3
熔点115.79 K,-157.36 °C,-251.25 °F
沸點119.93 K,-153.22 °C,-244.12 °F
三相点115.775 K(−157 °C),73.2 kPa
臨界點209.41 K,5.50 MPa
熔化热1.64 kJ·mol−1
汽化热9.08 kJ·mol−1
比熱容5R/2 = 20.786 J·mol−1·K−1
蒸氣壓
壓/Pa1101001 k10 k100 k
溫/K5965748499120
原子性質
氧化态2, 1, 0
电负性3.00(鲍林标度)
电离能第一:1350.8 kJ·mol−1

第二:2350.4 kJ·mol−1

第三:3565 kJ·mol−1
共价半径116±4 pm
范德华半径202 pm
氪的原子谱线
雜項
晶体结构面心立方
磁序抗磁性[3]
熱導率9.43×10-3  W·m−1·K−1
聲速(气态, 23 °C) 220, (液态) 1120 m·s−1
CAS号7439-90-9
同位素
主条目:氪的同位素
同位素丰度半衰期t1/2衰變
方式能量MeV產物
78Kr0.355%9.2×1021 [5]εε2.84878Se
80Kr2.286%穩定,帶44粒中子
81Kr痕量2.29×105 ε0.28181Br
81mKr人造13.10 IT0.19181Kr
ε0.47281Br
82Kr11.593%穩定,帶46粒中子
83Kr11.500%穩定,帶47粒中子
84Kr56.987%穩定,帶48粒中子
85Kr人造10.728 β0.68785Rb
86Kr17.279%穩定,帶50粒中子

正如其他稀有气体,氪可用于照明和摄影。氪发出的光有大量谱线,并大量以等离子体的形态释出,这使氪成为制造高功率气体激光器的重要材料,另外也有特制的氟化氪激光。氪放电管功率高、操作容易,因此在1960年至1983年间,一的定义是用氪86發出的橙色谱线作为基准的[6]

历史编辑

氪的发现者拉姆齐

氪在1898年由苏格兰化学家威廉·拉姆齐爵士和英格兰化学家莫里斯·特拉弗斯发现,他们在液态空气的几乎所有成分都蒸发后留下的残液中发现氪。以古希臘語 κρυπτός kryptós(“隱藏”)命名為氪。数周后,他们通过类似的方法发现了[7]因为发现包括氪在内的多种惰性气体,拉姆齐在1904年获得诺贝尔化学奖

1960年,国际间协定以氪86发出的谱线波长长度(波长为605.78纳米)定义一米的长度。在第11届国际计量大会,一米被定义为“氪86原子的2P10和5d5能级之间跃过所对应辐射在真空中波长的1650763.73倍”。[8]这个定义取代了原有的定义:一根存放在巴黎的合金棒。但最後一次修改使用光在真空中的速度來定義一公尺,1983年10月,国际计量局把一公尺的定義為光在真空中在1/299,792,458秒中走過的距離。[9][10][11]

特征编辑

氪可通过数条较强的谱线(光谱特征)辨认,其中最强的是绿色和黄色。[12]经过核裂变后会释出氪。[13]固态的氪呈白色,晶体面心立方结构,这个结构是所有惰性气体共有的。

同位素编辑

天然出现的氪有6个稳定的同位素,另外还有约30个已知的不稳定同位素和同质异能素[14]氪81半衰期为230,000年,是大气反应的产物,可以与其他天然氪同位素一同制备。氪在接近地表水时极易挥发,但氪81可用于鉴定地下水的年代(可推算5万至80万年前)。[15]

氪-85是非活性的、放射性的惰性气体,半衰期为10.76年,会由铀和的裂变释出,例如核武器爆炸和核反应堆都会释出氪85,在回收核反应堆的燃料棒时都会释出。因为大多核反应堆都位于北半球,北极的氪85浓度比南极的高约30%。[16]

化学编辑

氪正如其他惰性气体一样,不易与其他物质产生化学作用。但1962年首次合成出的化合物后,二氟化氪KrF
2
)也在1963年成功合成。[17]同年,格罗泽等人宣布合成出四氟化氪(KrF
4
),[18]但后来证实为鉴定错误。[19]另外有未经证实的报告指出发现氪含氧酸盐。[20]已有研究发现多原子离子ArKr+和KrH+,也有KrXe或KrXe+存在的证据。[21]

与氟以外原子成链的氪化合物已有发现,KrF
2
B(OTeF
5
)
3
反应会得出不稳定的Kr(OTeF
5
)
2
,该化合物中氪与氧成链;KrF
2
和[HC≡NH]+
[AsF
6
]在−50 °C反应则会得出存在氪氮链的正离子[HC≡N–Kr–F]+
[22][23]根据报告,HKrCN和HKrC≡CH在40K以下是稳定的。[17]

天然存在编辑

地球形成初期时存在的惰性气体至今仍然存在,是个例外,因为氦原子非常轻,移动速度也足以逃逸出地球的重力。大气中现存的氦原子是由地球上和铀的裂变产生的。氪在大气中的浓度为1ppm,可经由分馏从液态空气中分离。[24]太空中的氪含量不详,流星活动和太阳风暴形成的氪含量也同样未知。[25]

用途编辑

氪放电管

氪的多条谱线使离子化的氪气放电管呈白色,注入氪气的电灯泡是很光亮的白色光源,因此常用作摄影的闪光灯。氪气与其他气体混合可用于发光告示牌,会发出光亮的黄绿色光。[26]

氪与氩混合物可注入省电的荧光灯,这可以减少能量的消耗,但同时也减少了光度,也增加了成本。[27]氪比氩昂贵100倍。氪和氙也会注入白炽灯,以减少灯丝的蒸发,让灯丝可以在更高的运行温度中操作。[28]

氪的白光在有颜色的气体放电管中有很好的效果,这些放电管表面涂上涂料就可以得到颜色的效果。此外,氪在红色谱线区中的光能密度比要高的多,因此高功率激光秀使用的红色激光器多使用氪。如果使用一般的氦或氖,则很难达到所需的输出。[29]氟化氪激光在核聚变能源研究领域上有重要用途,这种激光束均匀度高、波长短,可以通过改变光斑大小追踪内爆的靶丸。[30]

在实验粒子物理学,液态氪可用作制造电磁热量计。其中著名的例子为欧洲核子研究中心的NA48实验中的热量计,当中使用了27吨的液态氪。这种用途比较罕见,因为使用液态的热量计比较便宜,也通常使用。相对于氩,氪的好处是莫里哀半径较短,只有4.7 cm,因此空间分辨率较好,重叠较少。

氪83在磁共振成像中有应用,特别可用于分辨憎水和亲水的表面。[31]X射线计算机断层成像中,使用氪和氙的混合物比单独使用氙的效果好。[32]

安全编辑

氪无毒,但有窒息性。[33]氪的麻醉性比空气強7倍,吸入含有50%氪和50%空气的气体所引致的麻醉相当于在4倍大气压力之下吸入空气,也相当于在30米水深潜水。

流行文化编辑

在DC公司的漫畫及影集、電影超人以及電視劇女超人系列中,氪元素為其剋星,且呈現綠色。此為戲劇效果,並無真實根據(見氪星石)。

在中国大陆,人们把用充值游戏称为課金,寫爲氪金[34]

参考资料编辑

  1. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry. 2022-05-04. ISSN 1365-3075. doi:10.1515/pac-2019-0603 (英语). 
  2. ^ Krypton页面存档备份,存于互联网档案馆). encyclopedia.airliquide.com
  3. ^ Magnetic susceptibility of the elements and inorganic compounds 互联网档案馆存檔,存档日期2012-01-12., in Lide, D. R. (编). CRC Handbook of Chemistry and Physics 86th. Boca Raton (FL): CRC Press. 2005. ISBN 0-8493-0486-5. 
  4. ^ Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, triple, and critical temperatures of the elements. CRC Handbook of Chemistry and Physics 85th. Boca Raton, Florida: CRC Press. 2005. 
  5. ^ Patrignani, C.; et al. Review of Particle Physics. Chinese Physics C. 2016, 40 (10): 100001. doi:10.1088/1674-1137/40/10/100001. (第768页)
  6. ^ David Halliday. Principles of physics. 約翰威立. 2011: 第3頁. ISBN 9780470561584. 
  7. ^ William Ramsay, Morris W. Travers. On a New Constituent of Atmospheric Air. Proceedings of the Royal Society of London. 1898, 63: 405–408. doi:10.1098/rspl.1898.0051. 
  8. ^ 施昌彦. 米的定义及其变迁. 中国计量. 2007-03-20 [2011-02-08]. [永久失效連結]
  9. ^ Shri Krishna Kimothi. The uncertainty of measurements: physical and chemical metrology: impact and analysis. American Society for Qualit. 2002: 122 [2011-02-08]. ISBN 0873895355. (原始内容存档于2013-10-11). 
  10. ^ Gibbs, Philip. How is the speed of light measured?. Department of Mathematics, University of California. 1997 [2007-03-19]. (原始内容存档于2015-08-21). 
  11. ^ Unit of length (meter)页面存档备份,存于互联网档案馆), NIST
  12. ^ Spectra of Gas Discharges. 斯特拉斯堡大学. 2007-06-21 [2011-02-08]. (原始内容存档于2011-04-02). 
  13. ^ Krypton (PDF). Argonne National Laboratory, EVS. 2005 [2007-03-17]. (原始内容 (PDF)存档于2009-12-20). 
  14. ^ Lide, D. R. (编), CRC Handbook of Chemistry and Physics 86th, Boca Raton (FL): CRC Press, 2005, ISBN 0-8493-0486-5 
  15. ^ Thonnard, Norbert; Larry D. MeKay; Theodore C. Labotka. Development of Laser-Based Resonance Ionization Techniques for 81-Kr and 85-Kr Measurements in the Geosciences (PDF). University of Tennessee, Institute for Rare Isotope Measurements: 4–7. 2001-02-05 [2007-03-20]. (原始内容存档于2021-02-13). 
  16. ^ Resources on Isotopes. U.S. Geological Survey. [2007-03-20]. (原始内容存档于2001-09-24). 
  17. ^ 17.0 17.1 Bartlett, Neil. The Noble Gases. Chemical & Engineering News. 2003 [2006-07-02]. (原始内容存档于2018-04-29). 
  18. ^ Grosse, A. V.; Kirshenbaum, A. D.; Streng, A. G.; Streng, L. V. Krypton Tetrafluoride: Preparation and Some Properties. Science (American Association for the Advancement of Science (AAAS)). 1963-03-15, 139 (3559): 1047–1048. ISSN 0036-8075. doi:10.1126/science.139.3559.1047. 
  19. ^ Prusakov, V. N.; Sokolov, V. B. Krypton difluoride. Soviet Atomic Energy (Springer Nature). 1971, 31 (3): 990–999. ISSN 0038-531X. doi:10.1007/bf01375764. 
  20. ^ Streng, A. G.; Grosse, A. V. Acid of Krypton and Its Barium Salt. Science (American Association for the Advancement of Science (AAAS)). 1964-01-17, 143 (3603): 242–243. ISSN 0036-8075. doi:10.1126/science.143.3603.242. 
  21. ^ Periodic Table of the Elements (PDF). Los Alamos National Laboratory's Chemistry Division: 100–101. [2007-04-05]. (原始内容 (PDF)存档于2006-11-25). 
  22. ^ John H. Holloway; Eric G. Hope. A. G. Sykes , 编. Advances in Inorganic Chemistry. Academic Press. 1998: 57. ISBN 012023646X. 
  23. ^ Errol G. Lewars. Modeling Marvels: Computational Anticipation of Novel Molecules. Springer. 2008: 68. ISBN 1402069723. 
  24. ^ How Products are Made: Krypton. [2006-07-02]. (原始内容存档于2006-04-14). 
  25. ^ Cardelli, Jason A.; Meyer, David M. The Abundance of Interstellar Krypton. The Astrophysical Journal Letters (The American Astronomical Society). 1996: L57–L60. doi:10.1086/310513. 
  26. ^ Mercury in Lighting (PDF). Cape Cod Cooperative Extension. [2007-03-20]. (原始内容 (PDF)存档于2007-09-29). 
  27. ^ "Energy-saving" lamps. anaheim.net. 2002 [2011-02-08]. (原始内容存档于2010-09-12). 
  28. ^ Properties, Applications and Uses of the "Rare Gases" Neon, Krypton and Xenon. Universal Industrial Gases, Inc. [2011-02-08]. (原始内容存档于2010-11-26). 
  29. ^ Laser Devices, Laser Shows and Effect (PDF). [2007-04-05]. (原始内容 (PDF)存档于2007-02-21). 
  30. ^ Sethian, J.; M. Friedman; M. Myers. Krypton Fluoride Laser Development for Inertial Fusion Energy (PDF). Plasma Physics Division, Naval Research Laboratory: 1–8. [2007-03-20]. (原始内容存档 (PDF)于2011-09-29). 
  31. ^ Pavlovskaya, GE; Cleveland, ZI; Stupic, KF; Basaraba, RJ; Meersmann, T. Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Proceedings of the National Academy of Sciences U.S.A. 2005, 102 (51): 18275–9. PMC 1317982 . PMID 16344474. doi:10.1073/pnas.0509419102. 
  32. ^ Chon, D; Beck, KC; Simon, BA; Shikata, H; Saba, OI; Hoffman, EA. Effect of low-xenon and krypton supplementation on signal/noise of regional CT-based ventilation measurements. Journal of Applied Physiology. 2007, 102 (4): 1535–44. PMID 17122371. doi:10.1152/japplphysiol.01235.2005. 
  33. ^ Properties of Krypton. [2011-02-08]. (原始内容存档于2009-02-19). 
  34. ^ 氪金、欧皇、非酋,这些《阴阳师》里的词汇是什么意思?. 澎湃新闻. 2016-12-15 [2018-06-24]. (原始内容存档于2018-06-24). 

外部連結编辑