标准电极电势

维基媒体列表条目

标准电极电势是可逆电极在标准状态及平衡态时的电势,也就是标准态时的平衡电势,记作,上标表示标准态。标准状态的溶质活度每公升1莫爾,气体压强10萬Pa,温度一般為298K。虽然电池的电动势可以直接测定,但单一可逆电极的标准电极电势却只有相对值没有绝对值,而且随温度、浓度和压强而变。电极电势的基准是标准氢电极:标准状态的H⁺/H₂电极电势定为0V,即,其他电极电势的值在此基础上获得。当某半电池和标准氢电池电极相连时为负极,该半电池的半反应的标准电极电势为负值,且绝对值与电池电动势相等;若为正极则相反。这样求得的值称作还原电势,总反应的标准电极电势也就是两个半反应标准电极电势的差,Eo為正时反应自发。任何温度下标准氢电极的标准电极电势值都为0,但其他电极电势值会受到温度影响。以Ni/NiO电极为例,它可以用作高温伪参比电极,电极电势在0至400°C大致符合以下公式:[1]

,T为温度

标准电极电势可以实验或热力学计算获得。,标准氢电极的反应自由能是零,水合氢离子和水合电子的标准生成自由能也是零,这样便可计算众多无法用实验测得的标准电极电势值(如氟气)。标准电极电势沒有加成性,要想求相加得到的第三反应的标准电极电势,还需要借助上述公式来求解。标准电极电势不随半反应的方向和计量系数改变,但它受到浓度和反应物形态影响。非标态的电极电势值可以能斯特方程求得。标准电极电势值只是热力学数据,不可用于预测反应速率和其他动力学性质,而且它的值在水溶液体系中测定,不可用于其他溶剂或高温时的反应。

能斯特方程:

标准电极电势有很大的实用价值,可用来判断氧化剂还原剂的相对强弱,判断氧化还原反应的方向,计算原电池的电动势、反应自由能平衡常数,计算其他半反应的标准电极电势,等等。将半反应按电极电势由低到高排序,可以得到标准电极电势表,可十分简明判断氧还反应的方向。

標準電極電勢表编辑

表中電極電勢以以下條件測得((s):固體;(l):液體;(g):氣體;(aq):水溶液;(Hg):汞齊):

单击頂栏箭咀可将数据按元素符号、反應物、產物或标准电极电势值排序。

元素氧化劑半反應還原劑來源
Ba⁺+e⁻Ba(s)−4.38[2][4][11]
Sr⁺+e⁻Sr(s)−4.10[12][2][4][13]
Ca⁺+e⁻Ca(s)−3.8[12][2][4][13]
Th⁴⁺+e⁻Th³⁺−3.6[14]
Pr³⁺+e⁻Pr²⁺−3.1[15]
3N₂(g)+2H⁺+2e⁻2HN₃(aq)−3.09[7]
Li⁺+e⁻Li(s)−3.0401[6]
N₂(g)+4H₂O+2e⁻2NH₂OH(aq)+2OH⁻−3.04[7]
Cs⁺+e⁻Cs(s)−3.026[6]
Ca(OH)₂(s)+2e⁻Ca(s)+2OH⁻−3.02[12]
Er³⁺+e⁻Er²⁺−3.0[16]
Ba(OH)₂(s)+2e⁻Ba(s)+2OH⁻−2.99[12]
Rb⁺+e⁻Rb(s)−2.98[5]
Mg⁺+e⁻Mg(s)−2.93[11]
K⁺+e⁻K(s)−2.92[6]
Ba²⁺+2e⁻Ba(s)−2.912[6]
La(OH)₃(s)+3e⁻La(s)+3OH⁻−2.90[17]
Fr⁺+e⁻Fr(s)−2.9[12]
Sr²⁺+2e⁻Sr(s)−2.899[6]
Sr(OH)₂(s)+2e⁻Sr(s)+2OH⁻−2.88[12]
Ca²⁺+2e⁻Ca(s)−2.868[6]
氮(銨)NH₄⁺+e⁻NH₄•−2.85
碳(碳鋰)Li⁺+C₆(s)+e⁻LiC₆(s)−2.84[18]
Eu²⁺+2e⁻Eu(s)−2.812[6]
Ra²⁺+2e⁻Ra(s)−2.8[6]
Ho³⁺+e⁻Ho²⁺−2.8[13]
Bk³⁺+e⁻Bk²⁺−2.8[13]
Yb²⁺+2e⁻Yb(s)−2.76[12][2]
Na⁺+e⁻Na(s)−2.71[6][10]
Nd³⁺+e⁻Nd²⁺−2.7[13]
Mg(OH)₂+2e⁻Mg(s)+2OH⁻−2.69[13]
Sm²⁺+2e⁻Sm(s)−2.68[12][2]
Be₂O₃²⁻+3H₂O+4e⁻2Be(s)+6OH⁻−2.63[13]
PmPm³⁺+e⁻Pm²⁺−2.6[13]
DyDy³⁺+e⁻Dy²⁺−2.6[13]
No²⁺+2e⁻No(s)−2.50[12]
HfO(OH)₂(s)+H₂O+4e⁻Hf(s)+4OH⁻−2.50[12]
Th(OH)₄(s)+4e⁻Th(s)+4OH⁻−2.48[12]
Md²⁺+2e⁻Md(s)−2.40[12]
TmTm²⁺+2e⁻Tm(s)−2.4[13]
La³⁺+3e⁻La(s)−2.379[6]
Y³⁺+3e⁻Y(s)−2.372[6]
Mg²⁺+2e⁻Mg(s)−2.372[6]
ZrO(OH)₂(s)+H₂O+4e⁻Zr(s)+4OH⁻−2.36[6]
Pr³⁺+3e⁻Pr(s)−2.353[12]
Ce³⁺+3e⁻Ce(s)−2.336[12]
Er³⁺+3e⁻Er(s)−2.331[12]
Ho³⁺+3e⁻Ho(s)−2.33[12]
Al(OH)₄⁻+3e⁻Al(s)+4OH⁻−2.33
Nd³⁺+3e⁻Nd(s)−2.323[13]
TmTm³⁺+3e⁻Tm(s)−2.319[13]
Al(OH)₃(s)+3e⁻Al(s)+3OH⁻−2.31
Sm³⁺+3e⁻Sm(s)−2.304[13]
FmFm²⁺+2e⁻Fm−2.3[13]
AmAm³⁺+e⁻Am²⁺−2.3[13]
DyDy³⁺+3e⁻Dy(s)−2.295[13]
LuLu³⁺+3e⁻Lu(s)−2.28[13]
Tb³⁺+3e⁻Tb(s)−2.28
Gd³⁺+3e⁻Gd(s)−2.279[13]
H₂(g)+2e⁻2H⁻−2.25
EsEs²⁺+2e⁻Es(s)−2.23[13]
PmPm²⁺+2e⁻Pm(s)−2.2[13]
TmTm³⁺+e⁻Tm²⁺−2.2[13]
DyDy²⁺+2e⁻Dy(s)−2.2[13]
Ac³⁺+3e⁻Ac(s)−2.20
YbYb³⁺+3e⁻Yb(s)−2.19[13]
Be⁺+e⁻Be(s)−2.12[11]
Cf²⁺+2e⁻Cf(s)−2.12[12]
Nd²⁺+2e⁻Nd(s)−2.1[13]
Ho²⁺+2e⁻Ho(s)−2.1[13]
Sc³⁺+3e⁻Sc(s)−2.077[19]
AlF₆³⁻+3e⁻Al(s)+6F⁻−2.069[13]
Am³⁺+3e⁻Am(s)−2.048[12]
CmCm³⁺+3e⁻Cm(s)−2.04[13]
Pu³⁺+3e⁻Pu(s)−2.031[13]
PrPr²⁺+2e⁻Pr(s)−2[13]
Er²⁺+2e⁻Er(s)−2[13]
Eu³⁺+3e⁻Eu(s)−1.991[13]
LrLr³⁺+3e⁻Lr−1.96[13]
Cf³⁺+3e⁻Cf(s)−1.94[12]
Ca²⁺+e⁻Ca⁺−1.936[6][12]
EsEs³⁺+3e⁻Es(s)−1.91[13]
PaPa⁴⁺+e⁻Pa³⁺−1.9[13]
Am²⁺+2e⁻Am(s)−1.9[12]
Th⁴⁺+4e⁻Th(s)−1.899[13]
Fm³⁺+3e⁻Fm(s)−1.89[12]
NpNp³⁺+3e⁻Np(s)−1.856[13]
Be²⁺+2e⁻Be(s)−1.85
H₂PO₂⁻+e⁻P(s)+2OH⁻−1.82[13]
Sr²⁺+2e⁻Sr(Hg)−1.793[20]
H₂BO₃⁻+H₂O+3e⁻B(s)+4OH⁻−1.79[21]
ThO₂+4H⁺+4e⁻Th(s)+2H₂O−1.789[22]
HfO²⁺+2H⁺+4e⁻Hf(s)+H₂O−1.724[23]
HPO₃²⁻+2H₂O+3e⁻P(s)+5OH⁻−1.71[24]
SiO₃²⁻+3H₂O+4e⁻Si(s)+6OH⁻−1.697[24]
Rf⁴⁺+4e⁻Rf(s)−1.67[25]
U³⁺+3e⁻U(s)−1.66[8]
Al³⁺+3e⁻Al(s)−1.66[10]
Ti²⁺+2e⁻Ti(s)−1.63[10]
Bk²⁺+2e⁻Bk(s)−1.6[12]
ZrO₂(s)+4H⁺+4e⁻Zr(s)+2H₂O−1.553[6]
Hf⁴⁺+4e⁻Hf(s)−1.55[12]
Zr⁴⁺+4e⁻Zr(s)−1.45[6]
Ti³⁺+3e⁻Ti(s)−1.37[26]
TiO(s)+2H⁺+2e⁻Ti(s)+H₂O−1.31
C⁴⁺+4e⁻C−1.3[27]
Ti₂O₃(s)+2H⁺+2e⁻2TiO(s)+H₂O−1.23
Zn(OH)₄²⁻+2e⁻Zn(s)+4OH⁻−1.199[28]
Mn²⁺+2e⁻Mn(s)−1.185[28]
Fe(CN)₆⁴⁻+6H⁺+2e⁻Fe(s)+6HCN(aq)−1.16[29]
V²⁺+2e⁻V(s)−1.175[3]
Te(s)+2e⁻Te²⁻−1.143[3]
Nb³⁺+3e⁻Nb(s)−1.099
Sn(s)+4H⁺+4e⁻SnH₄(g)−1.07
In(OH)₃(s)+3e⁻In(s)+3OH⁻−0.99[12]
SiO₂(s)+4H⁺+4e⁻Si(s)+2H₂O−0.91
B(OH)₃(aq)+3H⁺+3e⁻B(s)+3H₂O−0.89
Fe(OH)₂(s)+2e⁻Fe(s)+2OH⁻−0.89[29]
Fe₂O₃(s)+3H₂O+2e⁻2Fe(OH)₂(s)+2OH⁻−0.86[29]
TiO²⁺+2H⁺+4e⁻Ti(s)+H₂O−0.86
2H₂O+2e⁻H₂(g)+2OH⁻−0.8277[6]
Bi(s)+3H⁺+3e⁻BiH₃−0.8[28]
Zn²⁺+2e⁻Zn(Hg)−0.7628[6]
Zn²⁺+2e⁻Zn(s)−0.7618[6]
Ta₂O₅(s)+10H⁺+10e⁻2Ta(s)+5H₂O−0.75
Cr³⁺+3e⁻Cr(s)−0.74
Ni(OH)₂(s)+2e⁻Ni(s)+2OH⁻−0.72[30]
Ag₂S(s)+2e⁻2Ag(s)+S²⁻(aq)−0.69
金(金氰)Au(CN)₂⁻+e⁻Au(s)+2CN⁻−0.60
Ta³⁺+3e⁻Ta(s)−0.6
PbO(s)+H₂O+2e⁻Pb(s)+2OH⁻−0.58
2TiO₂(s)+2H⁺+2e⁻Ti₂O₃(s)+H₂O−0.56
Ga³⁺+3e⁻Ga(s)−0.53
U⁴⁺+e⁻U³⁺−0.52[8]
H₃PO₂(aq)+H⁺+e⁻P([31]+2H₂O−0.508[6]
H₃PO₃(aq)+2H⁺+2e⁻H₃PO₂(aq)+H₂O−0.499[6]
NiO₂(s)+2H₂O+2e⁻Ni(OH)₂(s)+2OH⁻−0.49[32]
H₃PO₃(aq)+3H⁺+3e⁻P([31]+3H₂O−0.454[6]
Cu(CN)₂⁻+e⁻Cu(s)+2CN⁻−0.44[33]
Fe²⁺+2e⁻Fe(s)−0.44[10]
2CO₂(g)+2H⁺+2e⁻(HO₂C)₂(aq)−0.43
Cr³⁺+e⁻Cr²⁺−0.42
Cd²⁺+2e⁻Cd(s)−0.40[10]
SeO₃²⁻+4e⁻+3H₂OSe+6OH⁻−0.37[34]
GeO₂(s)+2H⁺+2e⁻GeO(s)+H₂O−0.37
Cu₂O(s)+H₂O+2e⁻2Cu(s)+2OH⁻−0.360[6]
PbSO₄(s)+2e⁻Pb(s)+SO₄²⁻−0.3588[6]
PbSO₄(s)+2e⁻Pb(Hg)+SO₄²⁻−0.3505[6]
Eu³⁺+e⁻Eu²⁺−0.35[8]
In³⁺+3e⁻In(s)−0.34[3]
Tl⁺+e⁻Tl(s)−0.34[3]
NAD(P)⁺+H⁺+2e⁻NAD(P)H−0.32[35]
B³⁺+3e⁻B(s)−0.31
Ge(s)+4H⁺+4e⁻GeH₄(g)−0.29
Co²⁺+2e⁻Co(s)−0.28[6]
H₃PO₄(aq)+2H⁺+2e⁻H₃PO₃(aq)+H₂O−0.276[6]
V³⁺+e⁻V²⁺−0.26[10]
Ni²⁺+2e⁻Ni(s)−0.25
As(s)+3H⁺+3e⁻AsH₃(g)−0.23[3]
Ga⁺+e⁻Ga(s)−0.2[36]
AgI(s)+e⁻Ag(s)+I⁻−0.15224[28]
MoO₂(s)+4H⁺+4e⁻Mo(s)+2H₂O−0.15
Si(s)+4H⁺+4e⁻SiH₄(g)−0.14
Sn²⁺+2e⁻Sn(s)−0.13
O₂(g)+H⁺+e⁻HO₂•(aq)−0.13
Pb²⁺+2e⁻Pb(s)−0.13[10]
WO₂(s)+4H⁺+4e⁻W(s)+2H₂O−0.12
P)+3H⁺+3e⁻PH₃(g)−0.111[6]
CO₂(g)+2H⁺+2e⁻HCO₂H(aq)−0.11
Se(s)+2H⁺+2e⁻H₂Se(g)−0.11
CO₂(g)+2H⁺+2e⁻CO(g)+H₂O−0.11
Cu(NH₃)₂⁺+e⁻Cu(s)+2NH₃(aq)−0.1[37]
SnO(s)+2H⁺+2e⁻Sn(s)+H₂O−0.10
SnO₂(s)+2H⁺+2e⁻SnO(s)+H₂O−0.09
WO₃(aq)+6H⁺+6e⁻W(s)+3H₂O−0.09[3]
P)+3H⁺+3e⁻PH₃(g)−0.063[6]
氫(氘)2D⁺+2e⁻D₂(g)−0.044
Fe³⁺+3e⁻Fe(s)−0.04[29]
碳(甲酸)HCO₂H(aq)+2H⁺+2e⁻HCHO(aq)+H₂O−0.03
2H⁺+2e⁻H₂(g)≡0
AgBr(s)+e⁻Ag(s)+Br⁻+0.07133[28]
S₄O₆²⁻+2e⁻2S₂O₃²⁻+0.08
Fe₃O₄(s)+8H⁺+8e⁻3Fe(s)+4H₂O+0.085[9][10]
N₂(g)+2H₂O+6H⁺+6e⁻2NH₄OH(aq)+0.092
HgO(s)+H₂O+2e⁻Hg(l)+2OH⁻+0.0977
Cu(NH₃)₄²⁺+e⁻Cu(NH₃)₂⁺+2NH₃+0.10[3]
Ru(NH₃)₆³⁺+e⁻Ru(NH₃)₆²⁺+0.10[8]
氮(肼)N₂H₄(aq)+4H₂O+2e⁻2NH₄⁺+4OH⁻+0.11[7]
H₂MoO₄(aq)+6H⁺+6e⁻Mo(s)+4H₂O+0.11
Ge⁴⁺+4e⁻Ge(s)+0.12
C(s)+4H⁺+4e⁻CH₄(g)+0.13[3]
HCHO(aq)+2H⁺+2e⁻CH₃OH(aq)+0.13
S(s)+2H⁺+2e⁻H₂S(g)+0.14
Sn⁴⁺+2e⁻Sn²⁺+0.15
Cu²⁺+e⁻Cu⁺+0.159[3]
HSO₄⁻+3H⁺+2e⁻SO₂(aq)+2H₂O+0.16
UO₂²⁺+e⁻UO₂⁺+0.163[8]
SO₄²⁻+4H⁺+2e⁻SO₂(aq)+2H₂O+0.17
TiO²⁺+2H⁺+e⁻Ti³⁺+H₂O+0.19
Bi³⁺+2e⁻Bi⁺+0.2
SbO⁺+2H⁺+3e⁻Sb(s)+H₂O+0.20
CO₂(g)+4H⁺+4e⁻C(s)+2H₂O+0.205
3Fe₂O₃(s)+2H⁺+2e⁻2Fe₃O₄(s)+H₂O+0.22:p.100
AgCl(s)+e⁻Ag(s)+Cl⁻+0.22233[28]
H₃AsO₃(aq)+3H⁺+3e⁻As(s)+3H₂O+0.24
Ru³⁺(aq)+e⁻Ru²⁺(aq)+0.249[38]
GeO(s)+2H⁺+2e⁻Ge(s)+H₂O+0.26
UO₂⁺+4H⁺+e⁻U⁴⁺+2H₂O+0.273[8]
At₂+e⁻2At⁻+0.3[12]
Re³⁺+3e⁻Re(s)+0.300
Bi³⁺+3e⁻Bi(s)+0.32
碳(氰)2HCNO+2H⁺+2e⁻(CN)₂+2H₂O+0.330[39]
VO²⁺+2H⁺+e⁻V³⁺+H₂O+0.34
Cu²⁺+2e⁻Cu(s)+0.340[3]
At⁺+2e⁻At⁻+0.36[40]
鐵(鐵氰)Fe(CN)₆³⁻+e⁻Fe(CN)₆⁴⁻+0.36
碳(氰)(CN)₂+2H⁺+2e⁻2HCN+0.373[41]
Tc²⁺+2e⁻Tc(s)+0.40[12]
O₂(g)+2H₂O+4e⁻4OH⁻(aq)+0.40[10]
H₂MoO₄+6H⁺+3e⁻Mo³⁺+2H₂O+0.43
Ru²⁺+2e⁻Ru(s)+0.455[12]
Bi⁺+e⁻Bi(s)+0.50
CH₃OH(aq)+2H⁺+2e⁻CH₄(g)+H₂O+0.50
SO₂(aq)+4H⁺+4e⁻S(s)+2H₂O+0.50
Cu⁺+e⁻Cu(s)+0.520[3]
CO(g)+2H⁺+2e⁻C(s)+H₂O+0.52
I₃⁻+2e⁻3I⁻+0.53[10]
I₂(s)+2e⁻2I⁻+0.54[10]
金(金碘)AuI₄⁻+3e⁻Au(s)+4I⁻+0.56
H₃AsO₄(aq)+2H⁺+2e⁻H₃AsO₃(aq)+H₂O+0.56
金(金碘)AuI₂⁻+e⁻Au(s)+2I⁻+0.58
MnO₄⁻+2H₂O+3e⁻MnO₂(s)+4OH⁻+0.59
Rh⁺+e⁻Rh(s)+0.600[12]
S₂O₃²⁻+6H⁺+4e⁻2S(s)+3H₂O+0.60
鐵(二茂鐵)Fc+e⁻Fc(s)+0.641[42]
CH₃CO₂Ag+e⁻Ag+CH₃CO₂⁻+0.643[12]
H₂MoO₄(aq)+2H⁺+2e⁻MoO₂(s)+2H₂O+0.65
碳(苯醌) +2H⁺+2e⁻ +0.6992[28]
O₂(g)+2H⁺+2e⁻H₂O₂(aq)+0.70
Tl³⁺+3e⁻Tl(s)+0.72
鉑(鉑氯)PtCl₆²⁻+2e⁻PtCl₄²⁻+2Cl⁻+0.726[8]
Fe₂O₃(s)+6H⁺+2e⁻2Fe²⁺+3H₂O+0.728:p.100
H₂SeO₃(aq)+4H⁺+4e⁻Se(s)+3H₂O+0.74
AtO⁺+2H⁺+2e⁻At⁺+H₂O+0.74[43]
Rh³⁺+3e⁻Rh(s)+0.758[12]
鉑(鉑氯)PtCl₄²⁻+2e⁻Pt(s)+4Cl⁻+0.758[8]
Po⁴⁺+4e⁻Po+0.76[44]
(SCN)₂+2e⁻2SCN⁻+0.77[44]
Fe³⁺+e⁻Fe²⁺+0.77
Ag⁺+e⁻Ag(s)+0.7996[6]
Hg₂²⁺+2e⁻2Hg(l)+0.80
氮(硝)NO₃⁻(aq)+2H⁺+e⁻NO₂(g)+H₂O+0.80
FeO₄²⁻+5H₂O+6e⁻Fe₂O₃(s)+10OH⁻+0.81[29]
金(金溴)AuBr₄⁻+3e⁻Au(s)+4Br⁻+0.85
Hg²⁺+2e⁻Hg(l)+0.85
IrCl₆²⁻+e⁻IrCl₆³⁻+0.87[45]
MnO₄⁻+H⁺+e⁻HMnO₄⁻+0.90
Po⁴⁺+2e⁻Po²⁺+0.9[46]
2Hg²⁺+2e⁻Hg₂²⁺+0.91[3]
Pd²⁺+2e⁻Pd(s)+0.915[8]
金(金氯)AuCl₄⁻+3e⁻Au(s)+4Cl⁻+0.93
MnO₂(s)+4H⁺+e⁻Mn³⁺+2H₂O+0.95
氮(硝)NO₃⁻(aq)+4H⁺+3e⁻NO(g)+2H₂O(l)+0.958[47]
金(金溴)AuBr₂⁻+e⁻Au(s)+2Br⁻+0.96
Fe₃O₄(s)+8H⁺+2e⁻3Fe²⁺+4H₂O+0.98:p.100
HXeO₆³⁻+2H₂O+2e⁻HXeO₄⁻+4OH⁻+0.99[48]
氮(硝)HNO₂+H⁺+e⁻NO(g)+H₂O+0.996
VO₂⁺(aq)+2H⁺+e⁻VO²⁺(aq)+H₂O+1[49]
HAtO+H⁺+e⁻At+H₂O+1.0[50]
H₆TeO₆(aq)+2H⁺+2e⁻TeO₂(s)+4H₂O+1.02[51]
Br₂(l)+2e⁻2Br⁻+1.065
Br₂(aq)+2e⁻2Br⁻+1.087[10]
氮(硝)NO₂(g)+H⁺+e⁻HNO₂+1.093
Cu²⁺+2CN⁻+e⁻Cu(CN)₂⁻+1.12[52]
RuO₂+4H⁺+2e⁻Ru²⁺(aq)+2H₂O+1.120[53]
IO₃⁻+5H⁺+4e⁻HIO(aq)+2H₂O+1.13
金(金氯)AuCl₂⁻+e⁻Au(s)+2Cl⁻+1.15
HSeO₄⁻+3H⁺+2e⁻H₂SeO₃(aq)+H₂O+1.15
Ir³⁺+3e⁻Ir(s)+1.156[12]
Ag₂O(s)+2H⁺+2e⁻2Ag(s)+H₂O+1.17
ClO₃⁻+2H⁺+e⁻ClO₂(g)+H₂O+1.18
HXeO₆³⁻+5H₂O+8e⁻Xe(g)+11OH⁻+1.18[48]
Pt²⁺+2e⁻Pt(s)+1.188[8]
ClO₂(g)+H⁺+e⁻HClO₂(aq)+1.19
2IO₃⁻+12H⁺+10e⁻I₂(s)+6H₂O+1.20
ClO₄⁻+2H⁺+2e⁻ClO₃⁻+H₂O+1.20
O₂(g)+4H⁺+4e⁻2H₂O+1.229[10]
MnO₂(s)+4H⁺+2e⁻Mn²⁺+2H₂O+1.23
Ru(bipy)₃³⁺+e⁻Ru(bipy)₃²⁺+1.24[54]
HXeO₄⁻+3H₂O+6e⁻Xe(g)+7OH⁻+1.24[48]
Tl³⁺+2e⁻Tl⁺+1.25
Cr₂O₇²⁻+14H⁺+6e⁻2Cr³⁺+7H₂O+1.33
Cl₂(g)+2e⁻2Cl⁻+1.36[10]
RuO₄⁻(aq)+8H⁺+5e⁻Ru²⁺(aq)+4H₂O+1.368[55]
RuO₄+4H⁺+4e⁻RuO₂+2H₂O+1.387[55]
CoO₂(s)+4H⁺+e⁻Co³⁺+2H₂O+1.42
氮(肼)2NH₃OH⁺+H⁺+2e⁻N₂H₅⁺+2H₂O+1.42[7]
2HIO(aq)+2H⁺+2e⁻I₂(s)+2H₂O+1.44
Ce⁴⁺+e⁻Ce³⁺+1.44
BrO₃⁻+5H⁺+4e⁻HBrO(aq)+2H₂O+1.45
β-PbO₂(s)+4H⁺+2e⁻Pb²⁺+2H₂O+1.460[3]
α-PbO₂(s)+4H⁺+2e⁻Pb²⁺+2H₂O+1.468[3]
2BrO₃⁻+12H⁺+10e⁻Br₂(l)+6H₂O+1.48
2ClO₃⁻+12H⁺+10e⁻Cl₂(g)+6H₂O+1.49
HClO(aq)+H⁺+2e⁻Cl⁻(aq)+H₂O+1.49[56]
氧(超氧)HO₂+H⁺+e⁻H₂O₂+1.495[12]
HAtO₃+4H⁺+4e⁻HAtO+2H₂O+1.5[57]
MnO₄⁻+8H⁺+5e⁻Mn²⁺+4H₂O+1.51
HO₂•+H⁺+e⁻H₂O₂(aq)+1.51
Au³⁺+3e⁻Au(s)+1.52
RuO₄²⁻(aq)+8H⁺+4e⁻Ru²⁺(aq)+4H₂O+1.563[58]
NiO₂(s)+4H⁺+2e⁻Ni²⁺+2OH⁻+1.59
2HClO(aq)+2H⁺+2e⁻Cl₂(g)+2H₂O+1.63
IO₄⁻+2H⁺+2e⁻IO₃⁻+H₂O+1.64[59]
Ag₂O₃(s)+6H⁺+4e⁻2Ag⁺+3H₂O+1.67
HClO₂(aq)+2H⁺+2e⁻HClO(aq)+H₂O+1.67
Pb⁴⁺+2e⁻Pb²⁺+1.69[3]
MnO₄⁻+4H⁺+3e⁻MnO₂(s)+2H₂O+1.70
AgO(s)+2H⁺+e⁻Ag⁺+H₂O+1.77
氧(過氧)H₂O₂(aq)+2H⁺+2e⁻2H₂O+1.776
Co³⁺+e⁻Co²⁺+1.82
Au⁺+e⁻Au(s)+1.83[3]
BrO₄⁻+2H⁺+2e⁻BrO₃⁻+H₂O+1.85
Ag²⁺+e⁻Ag⁺+1.98[3]
氧(過氧)S₂O₈²⁻+2e⁻2SO₄²⁻+2.07
O₃(g)+2H⁺+2e⁻O₂(g)+H₂O+2.075[8]
HMnO₄⁻+3H⁺+2e⁻MnO₂(s)+2H₂O+2.09
XeO₃(aq)+6H⁺+6e⁻Xe(g)+3H₂O+2.12[48]
氧(氟氧)OF₂+2H⁺+4e⁻2F⁻+H₂O+2.153[12]
H₄XeO₆(aq)+8H⁺+8e⁻Xe(g)+6H₂O+2.18[48]
FeO₄²⁻+8H⁺+3e⁻Fe³⁺+4H₂O+2.20[60]
XeF₂(aq)+2H⁺+2e⁻Xe(g)+2HF(aq)+2.32[48]
H₄XeO₆(aq)+2H⁺+2e⁻XeO₃(aq)+H₂O+2.42[48]
F₂(g)+2e⁻2F⁻+2.87[3][10]
CmCm⁴⁺+e⁻Cm³⁺+3.0[61]
F₂(g)+2H⁺+2e⁻2HF(aq)+3.05[3]
Tb⁴⁺e⁻Tb³⁺+3.05[12]
PrPr⁴⁺+e⁻Pr³⁺+3.2[62]
KrF₂(aq)+2e⁻Kr(g)+2F⁻(aq)+3.27[63]

参见编辑

参考资料编辑

  1. ^ R.W. Bosch, D.Feron, and J.P. Celis, "Electrochemistry in Light Water Reactors", CRC Press, 2007.
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 Milazzo, G., Caroli, S., and Sharma, V. K. (1978). Tables of Standard Electrode Potentials (Wiley, Chichester).
  3. ^ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  4. ^ 4.0 4.1 4.2 4.3 Bratsch, S. G. (1989). Journal of Physical Chemistry Reference Data Vol. 18, pp. 1–21. 引证错误:带有name属性“Bra”的<ref>标签用不同内容定义了多次
  5. ^ 5.0 5.1 Vanýsek, Petr (2006). "Electrochemical Series," in Handbook of Chemistry and Physics: 87th Edition页面存档备份,存于互联网档案馆) (Chemical Rubber Company). 引证错误:带有name属性“Van”的<ref>标签用不同内容定义了多次
  6. ^ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 Vanýsek, Petr (2007). “Electrochemical Series”页面存档备份,存于互联网档案馆), in Handbook of Chemistry and Physics: 88th Edition页面存档备份,存于互联网档案馆) (Chemical Rubber Company). 引证错误:带有name属性“van88”的<ref>标签用不同内容定义了多次
  7. ^ 7.0 7.1 7.2 7.3 7.4 Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements 2nd. Oxford:Butterworth-Heinemann. 1997. ISBN 0-7506-3365-4. 
  8. ^ 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 Bard, A.J., Faulkner, L.R.(2001). Electrochemical Methods. Fundamentals and Applications, 2nd edition (John Wiley and Sons Inc).
  9. ^ 9.0 9.1 Marcel Pourbaix (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE International, Houston, Texas; Cebelcor, Brussels).
  10. ^ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 Peter Atkins (1997). Physical Chemistry, 6th edition (W.H. Freeman and Company, New York).
  11. ^ 11.0 11.1 11.2 Ca Sr Ba一價[11]與兩價間的標準電極電勢正好有規律關係,因此可以估計近似值
  12. ^ 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 12.18 12.19 12.20 12.21 12.22 12.23 12.24 12.25 12.26 12.27 12.28 12.29 12.30 12.31 12.32 12.33 12.34 Standard Redox Potential Table. [2012-01-14]. (原始内容存档于2021-02-06). 
  13. ^ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 13.21 13.22 13.23 13.24 13.25 13.26 13.27 13.28 13.29 13.30 13.31 13.32 13.33 13.34 13.35 13.36 Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  14. ^ Greenwood and Earnshaw, p. 1263
  15. ^ Standard Redox Potential Table. [2012-01-14]. (原始内容存档于2021-02-06). 
  16. ^ Standard Redox Potential Table. [2012-01-14]. (原始内容存档于2021-02-06). 
  17. ^ Vanýsek, Petr (2007). “Electrochemical Series”页面存档备份,存于互联网档案馆), in Handbook of Chemistry and Physics: 88th Edition页面存档备份,存于互联网档案馆) (Chemical Rubber Company).
  18. ^ 引证错误:没有为名为van92的参考文献提供内容
  19. ^ David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com 互联网档案馆存檔,存档日期2017-07-24., CRC Press, Boca Raton, FL, 2005.
  20. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  21. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  22. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  23. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  24. ^ 24.0 24.1 Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  25. ^ Ti Zr Hf 的標準電極電勢變化較規律,因此可估計 Rf的標準電極電勢
  26. ^ Gordon Aylward & Tristan Findlay (2008). "SI Chemical Data", 6th edition (John Wiley & Sons, Australia), ISBN 9780470816387.
  27. ^ List of carbon reactivity series (PDF). web.anl.gov. [2013-06-06]. (原始内容存档 (PDF)于2017-04-28).  可知碳之活性,九年義務教育課本《化學》九年級第一學期,上海教育出版社,2007年8月第2版,ISBN 978-7-5320-8481-4 第109、112頁、MSDS of carbon. [2013-06-06]. (原始内容存档于2016-03-05). 根據碳的相關安全資料,可之其活性範圍,推之
  28. ^ 28.0 28.1 28.2 28.3 28.4 28.5 28.6 Vanýsek, Petr (2007). “Electrochemical Series”, in Handbook of Chemistry and Physics: 88th Edition (Chemical Rubber Company).
  29. ^ 29.0 29.1 29.2 29.3 29.4 WebElements Periodic Table of the Elements | Iron | compounds information. [2012-01-14]. (原始内容存档于2021-01-18). 
  30. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  31. ^ 31.0 31.1 由−0.454和(2×−0.499+−0.508)÷3=−0.502推算出。
  32. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  33. ^ Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  34. ^ “Glyoxal Bisulfite”页面存档备份,存于互联网档案馆), Organic Syntheses, Collected Volume 3, p.438 (1955).
  35. ^ Huang, Haiyan; Shuning Wang; Johanna Moll; Rudolf K. Thauer. Electron Bifurcation Involved in the Energy Metabolism of the Acetogenic Bacterium Moorella thermoacetica Growing on Glucose or H2 plus CO2. Journal of Bacteriology. 2012-07-15, 194 (14): 3689–3699 [2013-09-10]. ISSN 0021-9193. doi:10.1128/JB.00385-12. (原始内容存档于2020-12-13). 
  36. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  37. ^ Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  38. ^ Greenwood and Earnshaw, p. 1077
  39. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  40. ^ {{cite journal | last=Champion | first=J. | last2=Alliot | first2=C. | last3=Renault | first3=E. | last4=Mokili | first4=B. M. | last5=Chérel | first5=M. | last6=Galland | first6=N. | last7=Montavon | first7=G. | title=Astatine Standard Redox Potentials and Speciation in Acidic Medium | journal=The Journal of Physical Chemistry A | publisher=American Chemical Society (ACS) | volume=114 | issue=1 | date=2009-12-16 | issn=1089-5639 | doi=10.1021/jp9077008 | pages=576–58₂]]
  41. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  42. ^ Connelly, Neil G.; Geiger, William E. Chemical Redox Agents for Organometallic Chemistry. Chemical Reviews. 1 January 1996, 96 (2): 877–910. PMID 11848774. doi:10.1021/cr940053x. 
  43. ^ {{cite journal | last=Champion | first=J. | last2=Alliot | first2=C. | last3=Renault | first3=E. | last4=Mokili | first4=B. M. | last5=Chérel | first5=M. | last6=Galland | first6=N. | last7=Montavon | first7=G. | title=Astatine Standard Redox Potentials and Speciation in Acidic Medium | journal=The Journal of Physical Chemistry A | publisher=American Chemical Society (ACS) | volume=114 | issue=1 | date=2009-12-16 | issn=1089-5639 | doi=10.1021/jp9077008 | pages=576–58₂]]
  44. ^ 44.0 44.1 Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  45. ^ {{cite book |last= Atkins |first=Peter |title= Inorganic Chemistry |edition=5th |year=2010 |publisher=W. H. Freeman |isbn= 978-1-42-921820-7 |pages=15₃]]
  46. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  47. ^ Peter Atkins (1997). Physical Chemistry, 6th edition (W.H. Freeman and Company, New York).
  48. ^ 48.0 48.1 48.2 48.3 48.4 48.5 48.6 WebElements Periodic Table of the Elements | Xenon | compounds information. [2012-01-14]. (原始内容存档于2021-03-22). 
  49. ^ Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred, Advanced Inorganic Chemistry 6th, New York: Wiley-Interscience, 1999, ISBN 0-471-19957-5 
  50. ^ Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich. Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. 1970: 237. ISBN 0-250-39923-7. OCLC 186926. 
  51. ^ Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred, Advanced Inorganic Chemistry 6th, New York: Wiley-Interscience, 1999, ISBN 0-471-19957-5 
  52. ^ Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  53. ^ Greenwood and Earnshaw, p. 1077
  54. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  55. ^ 55.0 55.1 Greenwood and Earnshaw, p. 1077
  56. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  57. ^ Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich. Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. 1970: 237. ISBN 0-250-39923-7. OCLC 186926. 
  58. ^ Greenwood and Earnshaw, p. 1077
  59. ^ Appelman, Evan H. Nonexistent compounds. Two case histories. Accounts of Chemical Research (American Chemical Society (ACS)). 1973-04-01, 6 (4): 113–117. ISSN 0001-4842. doi:10.1021/ar50064a001. 
  60. ^ Redox Reactions, Western Oregon University website. [2012-01-15]. (原始内容存档于2019-08-30). 
  61. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  62. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  63. ^ Leszczyński, P.J.; Grochala, W. Strong Cationic Oxidizers: Thermal Decomposition, Electronic Structure and Magnetism of Their Compounds (PDF). Acta Chim. Slov. 2013, 60 (3): 455–470. PMID 24169699. (原始内容存档 (PDF)于2022-10-09). 

外部链接编辑