半导体材料

維基媒體列表條目

半导体材料是一类固体材料,其導電性介于导体绝缘体之间,屬於半導體

发展编辑

  • 1833年,英國的法拉第發現硫化銀是半導體材料,因為它的電阻隨著溫度上升而降低。
  • 1874年,德國的布勞恩注意到硫化物的電導率與所加電壓的方向有關,這就是半導體的整流作用。
  • 1947年12月23日,巴丁布拉坦進一步使用點接觸電晶體製作出一個語音放大器,電晶體正式發明。
  • 1958年9月12日,美國的基尔比,細心地切了一塊作為電阻,再用一塊pn接面做為電容,製造出一個震盪器電路。

分类编辑

以原料分为:

列表编辑

半導體材料列表
元素化學式能隙 (eV)直接帶隙和間接帶隙
IV1Si1.12[1][2]間接带隙
IV1GermaniumGe0.67[1][2]間接帶隙
IV1Material properties of diamond英语Material properties of diamondC5.47[1][2]間接帶隙
IV1, α-SnSn0[3][4]半金属 (能带理论)
IV2碳化硅, 3C-SiCSiC2.3[1]間接帶隙
IV2碳化硅, 4H-SiCSiC3.3[1]間接帶隙
IV2碳化硅, 6H-SiC英语6H-SiCSiC3.0[1]間接帶隙
VI1, 硫的同素异形体S82.6[5]
VI1Se1.83 - 2.0[6]間接帶隙
VI1Se2.05間接帶隙
VI1Te0.33[7]
III-V2氮化硼, cubicBN6.36[8]間接帶隙
III-V2氮化硼, hexagonalBN5.96[8]quasi-direct
III-V2氮化硼BN5.5[9]
III-V2磷化硼BP2.1[10]間接帶隙
III-V2砷化硼BAs1.82直接帶隙
III-V2砷化硼B12As23.47間接帶隙
III-V2氮化鋁AlN6.28[1]直接帶隙
III-V2磷化铝AlP2.45[2]間接帶隙
III-V2砷化铝AlAs2.16[2]間接帶隙
III-V2锑化铝AlSb1.6/2.2[2]直接帶隙/direct
III-V2氮化鎵GaN3.44[1][2]直接帶隙
III-V2磷化鎵GaP2.26[1][2]間接帶隙
III-V2Gallium arsenide英语Gallium arsenideGaAs1.42[1][2]直接帶隙
III-V2銻化鎵GaSb0.73[1][2]直接帶隙
III-V2氮化銦InN0.7[1]直接帶隙
III-V2磷化銦InP1.35[1]直接帶隙
III-V2砷化铟InAs0.36[1]直接帶隙
III-V2锑化铟InSb0.17[1]直接帶隙
II-VI2硒化镉CdSe1.74[2]直接帶隙
II-VI2硫化镉CdS2.42[2]直接帶隙
II-VI2碲化镉CdTe1.49[2]直接帶隙
II-VI2氧化鋅ZnO3.37[2]直接帶隙
II-VI2硒化锌ZnSe2.7[2]直接帶隙
II-VI2硫化锌ZnS3.54/3.91[2]直接帶隙
II-VI2碲化锌ZnTe2.3[2]直接帶隙
I-VII2氯化亚铜CuCl3.4[11]直接帶隙
I-VI2Copper sulfide英语Copper sulfideCu2S1.2[10]間接帶隙
IV-VI2硒化铅PbSe0.26[7]直接帶隙
IV-VI2硫化铅PbS0.37[12]
IV-VI2碲化铅PbTe0.32[1]
IV-VI2硫化亚锡SnS1.3/1.0[13]直接帶隙/間接帶隙
IV-VI2二硫化锡SnS22.2[14]
IV-VI2碲化亚锡SnTe0.18
IV-VI3Lead tin telluride英语Lead tin telluridePb1−xSnxTe0-0.29
V-VI2碲化鉍Bi2Te30.13[1]
II-V2磷化镉Cd3P20.5[15]
II-V2砷化鎘Cd3As20
II-V2磷化锌Zn3P21.5[16]直接帶隙
II-V2二磷化锌ZnP22.1[17]
II-V2砷化锌Zn3As21.0[18]
II-V2锑化锌Zn3Sb2
2二氧化鈦, 锐钛矿TiO23.20[19]間接帶隙
2二氧化鈦, 金红石TiO23.0[19]直接帶隙
2二氧化鈦, 板鈦礦TiO23.26[19]
2氧化亚铜Cu2O2.17[20]
2氧化铜CuO1.2
2二氧化鈾UO21.3
2二氧化锡SnO23.7
3钛酸钡BaTiO33
3钛酸锶SrTiO33.3
3铌酸锂LiNbO34
V-VI2monoclinic 二氧化钒VO20.7[21]光學帶隙
2碘化鉛PbI22.4[22]
2二硫化钼MoS21.23 eV (2H)[23]間接帶隙
2Gallium(II) selenide英语Gallium(II) selenideGaSe2.1間接帶隙
2硒化铟InSe1.26-2.35 eV[24]直接帶隙 (2D間接帶隙)
2硫化亚锡SnS>1.5 eV直接帶隙
2硫化铋Bi2S31.3[1]
Magnetic, diluted (DMS)[25]3Gallium manganese arsenide英语Gallium manganese arsenideGaMnAs
Magnetic, diluted (DMS)3Lead manganese telluridePbMnTe
4Lanthanum calcium manganateLa0.7Ca0.3MnO3
2氧化亚铁FeO2.2 [26]
2一氧化镍NiO3.6–4.0直接帶隙[27][28]
2Europium(II) oxide英语Europium(II) oxideEuO
2硫化亚铕EuS
2溴化铬CrBr3
其它3Copper indium selenide英语Copper indium selenide, CISCuInSe21直接帶隙
其它3Silver gallium sulfideAgGaS2
其它3Zinc silicon phosphideZnSiP22.0[10]
其它2三硫化二砷 雌黃As2S32.7[29]直接帶隙
其它2硫化砷 雄黄As4S4
其它2Platinum silicide英语Platinum silicidePtSi
其它2碘化铋BiI3
其它2碘化汞HgI2
其它2溴化亚铊TlBr2.68[30]
其它2硫化银Ag2S0.9[31]
其它2Iron disulfide英语Iron disulfideFeS20.95[32]
其它4Copper zinc tin sulfide英语Copper zinc tin sulfide, CZTSCu2ZnSnS41.49直接帶隙
其它4Copper zinc antimony sulfide英语Copper zinc antimony sulfide, CZASCu1.18Zn0.40Sb1.90S7.22.2[33]直接帶隙
其它3Copper tin sulfide, CTSCu2SnS30.91[10]直接帶隙

合金表编辑

半導體材料合金列表
元素材料化學式能隙 (eV)直接帶隙和間接帶隙
IV-VI3Lead tin telluride英语Lead tin telluridePb1−xSnxTe00.29
IV2矽鍺Si1−xGex0.671.11[1]直接帶隙/間接帶隙
IV2Silicon-tin英语Silicon-tinSi1−xSnx1.01.11間接帶隙
III-V3Aluminium gallium arsenide英语Aluminium gallium arsenideAlxGa1−xAs1.422.16[1]直接帶隙/間接帶隙
III-V3Indium gallium arsenide英语Indium gallium arsenideInxGa1−xAs0.361.43直接帶隙
III-V3磷化銦鎵InxGa1−xP1.352.26直接帶隙/間接帶隙
III-V3Aluminium indium arsenide英语Aluminium indium arsenideAlxIn1−xAs0.362.16直接帶隙/間接帶隙
III-V3Aluminium gallium antimonide英语Aluminium gallium antimonideAlxGa1−xSb0.71.61直接帶隙/間接帶隙
III-V3Aluminium indium antimonide英语Aluminium indium antimonideAlxIn1−xSb0.171.61直接帶隙/間接帶隙
III-V3Gallium arsenide nitrideGaAsN
III-V3Gallium arsenide phosphide英语Gallium arsenide phosphideGaAsP1.432.26直接帶隙/間接帶隙
III-V3Aluminium arsenide antimonide英语Aluminium arsenide antimonideAlAsSb1.612.16間接帶隙
III-V3Gallium arsenide antimonide英语Gallium arsenide antimonideGaAsSb0.71.42[1]直接帶隙
III-V3Aluminium gallium nitride英语Aluminium gallium nitrideAlGaN3.446.28直接帶隙
III-V3Aluminium gallium phosphide英语Aluminium gallium phosphideAlGaP2.262.45間接帶隙
III-V3Indium gallium nitride英语Indium gallium nitrideInGaN23.4直接帶隙
III-V3Indium arsenide antimonide英语Indium arsenide antimonideInAsSb0.170.36直接帶隙
III-V3Indium gallium antimonide英语Indium gallium antimonideInGaSb0.170.7直接帶隙
III-V4Aluminium gallium indium phosphide英语Aluminium gallium indium phosphideAlGaInP直接帶隙/間接帶隙
III-V4Aluminium gallium arsenide phosphideAlGaAsP
III-V4Indium gallium arsenide phosphide英语Indium gallium arsenide phosphideInGaAsP
III-V4Indium gallium arsenide antimonide英语Indium gallium arsenide antimonideInGaAsSb
III-V4Indium arsenide antimonide phosphide英语Indium arsenide antimonide phosphideInAsSbP
III-V4Aluminium indium arsenide phosphideAlInAsP
III-V4Aluminium gallium arsenide nitrideAlGaAsN
III-V4Indium gallium arsenide nitrideInGaAsN
III-V4Indium aluminium arsenide nitrideInAlAsN
III-V4Gallium arsenide antimonide nitrideGaAsSbN
III-V5Gallium indium nitride arsenide antimonideGaInNAsSb
III-V5Gallium indium arsenide antimonide phosphide英语Gallium indium arsenide antimonide phosphideGaInAsSbP
II-VI3碲化鋅鎘, CZTCdZnTe1.42.2直接帶隙
II-VI3Mercury cadmium telluride英语Mercury cadmium tellurideHgCdTe01.5
II-VI3Mercury zinc telluride英语Mercury zinc tellurideHgZnTe02.25
II-VI3Mercury zinc selenideHgZnSe
II-V4Zinc cadmium phosphide arsenide英语Zinc cadmium phosphide arsenide(Zn1−xCdx)3(P1−yAsy)2[34]0[35]1.5[36]
其它4Copper indium gallium selenide英语Copper indium gallium selenide, CIGSCu(In,Ga)Se211.7直接帶隙

參見编辑

參考文獻编辑

  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 NSM Archive - Physical Properties of Semiconductors. www.ioffe.ru. [2010-07-10]. (原始内容存档于2015-09-28). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Safa O. Kasap; Peter Capper. Springer handbook of electronic and photonic materials. Springer. 2006: 54,327. ISBN 978-0-387-26059-4. 
  3. ^ S.H. Groves, C.R. Pidgeon, A.W. Ewald, R.J. Wagner Journal of Physics and Chemistry of Solids, Volume 31, Issue 9, September 1970, Pages 2031-2049 (1970). Interband magnetoreflection of α-Sn.
  4. ^ Tin, Sn. www.matweb.com. 
  5. ^ Abass, A. K.; Ahmad, N. H. Indirect band gap investigation of orthorhombic single crystals of sulfur. Journal of Physics and Chemistry of Solids. 1986, 47 (2): 143. Bibcode:1986JPCS...47..143A. doi:10.1016/0022-3697(86)90123-X. 
  6. ^ Todorov, T. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material. Nature Communications. 2017, 8 (1): 682. Bibcode:2017NatCo...8..682T. PMC 5613033 . PMID 28947765. S2CID 256640449. doi:10.1038/s41467-017-00582-9. 
  7. ^ 7.0 7.1 Dorf, Richard. The Electrical Engineering Handbook. CRC Press. 1993: 2235–2236. ISBN 0-8493-0185-8. 
  8. ^ 8.0 8.1 Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy (PDF). Journal of Physics: Condensed Matter. 2008, 20 (7): 075233. Bibcode:2008JPCM...20g5233E. S2CID 52027854. doi:10.1088/0953-8984/20/7/075233. hdl:2160/612 . 
  9. ^ Boron nitride nanotube. www.matweb.com. 
  10. ^ 10.0 10.1 10.2 10.3 Madelung, O. Semiconductors: Data Handbook. Birkhäuser. 2004: 1. ISBN 978-3-540-40488-0. 
  11. ^ Claus F. Klingshirn. Semiconductor optics. Springer. 1997: 127. ISBN 978-3-540-61687-0. 
  12. ^ Lead(II) sulfide. www.matweb.com. 
  13. ^ Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray. Annealing influence over structural and optical properties of sprayed SnS thin films. Optical Materials. 26 May 2013, 35 (9): 1693–1699. Bibcode:2013OptMa..35.1693P. doi:10.1016/j.optmat.2013.04.034. 
  14. ^ Burton, Lee A.; Whittles, Thomas J.; Hesp, David; Linhart, Wojciech M.; Skelton, Jonathan M.; Hou, Bo; Webster, Richard F.; O'Dowd, Graeme; Reece, Christian; Cherns, David; Fermin, David J.; Veal, Tim D.; Dhanak, Vin R.; Walsh, Aron. Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A. 2016, 4 (4): 1312–1318. doi:10.1039/C5TA08214E. hdl:10044/1/41359 . 
  15. ^ Haacke, G.; Castellion, G. A. Preparation and Semiconducting Properties of Cd3P2. Journal of Applied Physics. 1964, 35 (8): 2484–2487. Bibcode:1964JAP....35.2484H. doi:10.1063/1.1702886. 
  16. ^ Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 (PDF). Applied Physics Letters. 2009, 95 (11): 112103. Bibcode:2009ApPhL..95k2103K. ISSN 0003-6951. doi:10.1063/1.3225151. 
  17. ^ Syrbu, N. N.; Stamov, I. G.; Morozova, V. I.; Kiossev, V. K.; Peev, L. G. Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation. Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds. 1980: 237–242. 
  18. ^ Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2. Journal of Applied Physics. 1999, 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569. 
  19. ^ 19.0 19.1 19.2 Rahimi, N.; Pax, R. A.; MacA. Gray, E. Review of functional titanium oxides. I: TiO2 and its modifications. Progress in Solid State Chemistry. 2016, 44 (3): 86–105. doi:10.1016/j.progsolidstchem.2016.07.002. 
  20. ^ O. Madelung; U. Rössler; M. Schulz (编). Cuprous oxide (Cu2O) band structure, band energies. Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group III Condensed Matter. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. 1998: 1–4. ISBN 978-3-540-64583-2. doi:10.1007/10681727_62. 
  21. ^ Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO 2, V 6 O 13, and V 2 O 3. Physical Review B. 1990, 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. PMID 9994356. doi:10.1103/physrevb.41.4993. 
  22. ^ Sinha, Sapna. Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. Nature Communications. 2020, 11 (1): 823. Bibcode:2020NatCo..11..823S. PMC 7010709 . PMID 32041958. S2CID 256633781. doi:10.1038/s41467-020-14481-z. 
  23. ^ Kobayashi, K.; Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B. 1995, 51 (23): 17085–17095. Bibcode:1995PhRvB..5117085K. PMID 9978722. doi:10.1103/PhysRevB.51.17085. 
  24. ^ Arora, Himani. Charge transport in two-dimensional materials and their electronic applications (PDF). Doctoral Dissertation. 2020 [July 1, 2021]. 
  25. ^ B. G. Yacobi Semiconductor materials: an introduction to basic principles Springer, 2003, ISBN 0-306-47361-5
  26. ^ Kumar, Manish; Sharma, Anjna; Maurya, Indresh Kumar; Thakur, Alpana; Kumar, Sunil. Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. Journal of Taibah University for Science. 2019, 13: 280–285. S2CID 139826266. doi:10.1080/16583655.2019.1565437 . 
  27. ^ Synthesis and Characterization of Nano-DimensionalNickelous Oxide (NiO) SemiconductorS. Chakrabarty and K. Chatterjee
  28. ^ Synthesis and Room Temperature Magnetic Behaviorof Nickel Oxide NanocrystallitesKwanruthai Wongsaprom*[a] and Santi Maensiri [b]
  29. ^ Arsenic sulfide (As2S3)
  30. ^ Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors
  31. ^ HODES; Ebooks Corporation. Chemical Solution Deposition of Semiconductor Films. CRC Press. 8 October 2002: 319– [28 June 2011]. ISBN 978-0-8247-4345-1. 
  32. ^ Arumona Edward Arumona; Amah A N. Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium. Advanced Journal of Graduate Research. 2018, 3: 41–46. doi:10.21467/ajgr.3.1.41-46 . 
  33. ^ Prashant K Sarswat; Michael L Free. Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode. International Journal of Photoenergy. 2013, 2013: 1–7. doi:10.1155/2013/154694 . 
  34. ^ Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics. Inorganic Materials. 2014, 50 (9): 868–873. S2CID 94409384. doi:10.1134/S0020168514090143. 
  35. ^ Borisenko, Sergey; et al. Experimental Realization of a Three-Dimensional Dirac Semimetal. Physical Review Letters. 2014, 113 (27603): 027603. Bibcode:2014PhRvL.113b7603B. PMID 25062235. S2CID 19882802. arXiv:1309.7978 . doi:10.1103/PhysRevLett.113.027603. 
  36. ^ Cisowski, J. Level Ordering in II3-V2 Semiconducting Compounds. Physica Status Solidi B. 1982, 111 (1): 289–293. Bibcode:1982PSSBR.111..289C. doi:10.1002/pssb.2221110132.