聚变实验列表

维基媒体列表条目

45%

用于发展聚变能的实验总是会使用专门的装置,这些装置可以根据他们使用的聚变原理和燃料自持方式来进行区分。

Nova Laser,用于惯性约束聚变的实验(1984-1999)

主要区分为磁约束惯性约束两种。在磁约束中,热等离子体膨胀的趋势被等离子体中的电流和外部线圈产生的磁场之间的洛伦兹力抵消。粒子密度范围趋向于1018-1022 m−3,线性尺寸范围为0.1 m至10m。 粒子和能量约束时间在从几毫秒到超过一秒的范围内,但是配置本身通常通过输入粒子、能量和电流来维持数倍或数千倍的时间。一些理论能够无限期地维持等离子体。

磁约束编辑

环形器编辑

环形器可以是轴对称的,例如托卡马克反场箍缩英语Reversed_field_pinch,也可以是不对称的,比如仿星器。通过放弃环形对称性而获得的额外的自由度可能最终可以产生更好的约束,但工程、理论和实验诊断上的成本十分复杂。仿星器通常具有周期性,例如五倍的旋转对称。反场箍缩,尽管具有一些理论上的优势,例如低磁场线圈,还没有证明是成功的。

托卡马克编辑

装置名称状态建造时间运行时间地点所属组织最大/最小半径磁场等离子电流备注照片
T-1关闭?1957-1959莫斯科 库尔恰托夫研究所0.625 m/0.13 m1 T0.04 MA首台托卡马克
T-3关闭?1962-?莫斯科 库尔恰托夫研究所1 m/0.12 m2.5 T0.06 MA
ST (Symmetric Tokamak)关闭Model C1970-1974普林斯顿 普林斯顿等离子体物理实验室1.09 m/0.13 m5.0 T0.13 MA美国首台托卡马克,从Model C仿星器改造而来
ORMAK (Oak Ridge tokaMAK)关闭1971-1976橡树岭 橡树岭国家实验室0.8 m/0.23 m2.5 T0.34 MA等离子体温度首次达到20 MK
ATC关闭1971-19721972-1976普林斯顿 普林斯顿等离子体物理实验室0.88 m/0.11 m2 T0.05 MA演示了等离子体压缩
TFR (Tokamak de Fontenay-aux-Roses)关闭1973-1984丰特奈-欧罗斯 原子能和替代能源委员会1 m/0.2 m6 T0.49
T-10 (Tokamak-10)关闭1975-?莫斯科 库尔恰托夫研究所1.50 m/0.36 m4 T0.6 MA当时最大的托卡马克装置
PLT (Princeton Large Torus)关闭1975-1986普林斯顿 普林斯顿等离子体物理实验室1.32 m/0.4 m4 T0.7 MA等离子体电流首次达到1 MA
ASDEX (Axially Symmetric Divertor Experiment)[1]改造 →HL-2A1980-1990加兴 Max-Planck-Institut für Plasmaphysik1.65 m/0.4 m2.8 T0.5 MA1982年发现了H模英语High-confinement mode
TEXTOR [2][3]关闭1976-19801981-2013于利希 于利希研究中心1.75 m/0.47 m2.8 T0.8 MA研究等离子体-壁相互作用
TFTR (Tokamak Fusion Test Reactor)[4]关闭1980-19821982-1997普林斯顿 普林斯顿等离子体物理实验室2.4 m/0.8 m6 T3 MA创造了聚变能输出10.7 MW、等离子体温度510 MK的纪录
JET [5]运行中1978-19831983-卡尔汉姆 Culham Centre for Fusion Energy2.96 m/0.96 m4 T7 MA创造了聚变能输出16.1 MW的纪录
Novillo西班牙语Tokamak Novillo[6][7]关闭NOVA-II1983-2004墨西哥城 Instituto Nacional de Investigaciones Nucleares0.23 m/0.06 m1 T0.01 MA研究等离子体-壁相互作用
JT-60 (Japan Torus-60)[8]改造 →JT-60SA1985-2010那珂市 Japan Atomic Energy Research Institute3.4 m/1.0 m4 T3 MAHigh-beta steady-state operation, highest fusion triple product
DIII-D[9]运行中1986[10]1986-聖地牙哥 (加利福尼亞州) General Atomics1.67 m/0.67 m2.2 T3 MA托卡马克优化设计
STOR-M (Saskatchewan Torus-Modified)[11]运行中1987-萨斯卡通 Plasma Physics Laboratory (Saskatchewan)0.46 m/0.125 m1 T0.06 MA研究等离子体加热和反常运输
T-15改造 →T-15MD1983-19881988-1995莫斯科 库尔恰托夫研究所2.43 m/0.7 m3.6 T1 MA首台超导托卡马克
Tore Supra[12]改造 →WEST1988-2011卡达拉舍 Département de Recherches sur la Fusion Contrôlée2.25 m/0.7 m4.5 T2 MA主动冷却的大型托卡马克
ADITYA (tokamak)运行中1989-甘地讷格尔 Institute for Plasma Research0.75 m/0.25 m1.2 T0.25 MA
COMPASS (COMPact ASSembly)[13][14]运行中1980-1989-布拉格 Institute of Plasma Physics AS CR0.56 m/0.23 m2.1 T0.32 MA
FTU运行中1990-弗拉斯卡蒂 ENEA0.935 m/0.35 m8 T1.6 MA
START [15]关闭1990-1998卡尔汉姆 Culham Centre for Fusion Energy0.3 m/?0.5 T0.31 MA首台全尺寸球形托卡马克
ASDEX Upgrade (Axially Symmetric Divertor Experiment)运行中1991-加兴 Max-Planck-Institut für Plasmaphysik1.65 m/0.5 m2.6 T1.4 MA
Alcator C-Mod (Alto Campo Toro)[16]关闭1986-1991-2016剑桥 麻省理工学院0.68 m/0.22 m8 T2 MA创造了等离子体压力2.05 bar的纪录
ISTTOK (Instituto Superior Técnico TOKamak)[17]运行中1992-里斯本 Instituto de Plasmas e Fusão Nuclear0.46 m/0.085 m2.8 T0.01 MA
TCV (Tokamak à Configuration Variable)[18]运行中1992-洛桑 洛桑联邦理工学院0.88 m/0.25 m1.43 T1.2 MA聚变研究
Pegasus Toroidal Experiment[19]运行中?1996-麦迪逊 威斯康星大学麦迪逊分校0.45 m/0.4 m0.18 T0.3 MA极低长宽比
NSTX (National Spherical Torus Experiment)[20]运行中1999-平原镇Plainsboro Township 普林斯顿等离子体物理实验室0.85 m/0.68 m0.3 T2 MA研究球形托卡马克理论
ET (Electric Tokamak)改造 →ETPD19981999-2006洛杉矶 加利福尼亚大学洛杉矶分校5 m/1 m0.25 T0.045当时最大的托卡马克装置
CDX-U (Current Drive Experiment-Upgrade)改造 →LTX2000-2005普林斯顿 普林斯顿等离子体物理实验室0.3 m/? m0.23 T0.03 MAStudy Lithium in plasma walls
MAST (Mega-Ampere Spherical Tokamak)[21]改造 →MAST-Upgrade1997-19991999-2013卡尔汉姆 Culham Centre for Fusion Energy0.9 m/0.6 m0.55 T1.4 MA研究球形托卡马克聚变
SST-1 (Steady State Superconducting Tokamak)[22]运行中2001-2005-甘地讷格尔 Institute for Plasma Research1.1 m/0.2 m3 T0.22 MAProduce a 1000s elongated double null divertor plasma
EAST [23]运行中2003-20062006-合肥 中国科学院合肥物质科学研究院1.85 m/0.4 5m3.5 T0.5 MAH模式等离子体在50 MK时自持超过100 s
KSTAR [24]运行中1998-20072008-大田广域市 National Fusion Research Institute1.8 m/0.5 m3.5 T2 MA全超导托卡马克
LTX (Lithium Tokamak Experiment)运行中2005-20082008-普林斯顿 普林斯顿等离子体物理实验室0.4 m/? m0.4 T0.4 MAStudy Lithium in plasma walls
QUEST (Spherical Tokamak)[25]运行中2008-春日市 Kyushu University0.68 m/0.4 m0.25 T0.02 MA研究球形托卡马克中的稳态等离子体
Kazakhstan Tokamak for Material testing (KTM)运行中2000-20102010-库尔恰托夫 National Nuclear Center of the Republic of Kazakhstan0.86 m/0.43 m1 T0.75 MATesting of wall and divertor
ST25-HTS[26]运行中2012-20152015-卡尔汉姆 Tokamak Energy Ltd0.25 m/0.125 m0.1 T0.02 MA稳态等离子体
WEST (Tungsten Environment in Steady-state Tokamak)运行中2013-20162016-卡达拉舍 Département de Recherches sur la Fusion Contrôlée2.5 m/0.5 m3.7 T1 MA主动冷却超导托卡马克
ST40[27]运行中2017-20182018-卡尔汉姆 Tokamak Energy Ltd0.4 m/0.3 m3 T2 MA首台球形强场托卡马克
JT-60SA (Japan Torus-60 super, advanced)[28]建设中2013-2020?2020?那珂 Japan Atomic Energy Research Institute2.96 m/1.18 m2.25 T5.5 MAOptimise plasma configurations for ITER and DEMO with full non-inductive steady-state operation
ITER[29]建设中2013-2025?卡达拉舍 ITER Council6.2 m/2.0 m5.3 T15 MA ?Demonstrate feasibility of fusion on a power-plant scale with 500 MW fusion power
DTT (Divertor Tokamak Test facility)[30]规划?2022?弗拉斯卡蒂 ENEA2.15 m/0.70 m6 T ?6 MA ?Divertor design
IGNITOR[31]规划[32]?>2024特羅伊茨克 (車里雅賓斯克州) ENEA1.32 m/0.47 m13 T11 MA ?Compact fustion reactor with self-sustained plasma and 100 MW of planned fusion power
CFETR [33]规划2020?2030? 中国科学院等离子体物理研究所5.7 m ?5 T ?10 MA ?Bridge gaps between ITER and DEMO, planned fusion power 1000 MW
K-DEMO [34]规划2037? National Fusion Research Institute6.8 m/2.1 m7 T12 MA ?Prototype for the development of commercial fusion reactors with around 2200 MW of fusion power
DEMO规划2031?2044??9 m/3 m ?6 T ?20 MA ?Prototype for a commercial fusion reactor

仿星器编辑

Device NameStatusConstructionOperationTypeLocationOrganisationMajor/Minor RadiusB-fieldPurposeImage
Model A关闭1952-19531953-?Figure-8普林斯顿 普林斯顿等离子体物理实验室0.3 m/0.02 m0.1 TFirst stellarator
Model B关闭1953-19541954-1959Figure-8普林斯顿 普林斯顿等离子体物理实验室0.3 m/0.02 m5 TDevelopment of plasma diagnostics
Model B-2关闭Figure-8普林斯顿 普林斯顿等离子体物理实验室0.3 m/0.02 m5 T
Model B-3关闭1958Figure-8普林斯顿 普林斯顿等离子体物理实验室0.4 m/0.02 m4 T
Model B-64关闭1955Square普林斯顿 普林斯顿等离子体物理实验室? m/0.05 m1.8 T
Model B-65关闭Racetrack普林斯顿 普林斯顿等离子体物理实验室
Model B-66关闭普林斯顿普林斯顿等离子体物理实验室
Wendelstein 1-A关闭1960Racetrack加兴 Max-Planck-Institut für Plasmaphysik0.35 m/0.02 m2 Tℓ=3
Wendelstein 1-B关闭1960Racetrack加兴 Max-Planck-Institut für Plasmaphysik0.35 m/0.02 m2 Tℓ=2
Model C改造 →ST1957-19621962-1969Racetrack普林斯顿 普林斯顿等离子体物理实验室1.9 m/0.07 m3.5 TFound large plasma losses by Bohm diffusion
L-1关闭19631963-1971Lebedev Lebedev Physical Institute0.6 m/0.05 m1 T
SIRIUS关闭1964-?哈尔科夫
TOR-1关闭19671967-1973Lebedev Lebedev Physical Institute0.6 m/0.05 m1 T
TOR-2关闭?1967-1973Lebedev 列别杰夫物理研究所0.63 m/0.036 m2.5 T
Wendelstein 2-A关闭1965-19681968-1974Heliotron加兴 Max-Planck-Institut für Plasmaphysik0.5 m/0.05 m0.6 TGood plasma confinement “Munich mystery”
Wendelstein 2-B关闭?-19701971-?Heliotron加兴 Max-Planck-Institut für Plasmaphysik0.5 m/0.055 m1.25 TDemonstrated similar performance than tokamaks
L-2关闭?1975-?Lebedev Lebedev Physical Institute1 m/0.11 m2.0 T
WEGA改造 →HIDRA1972-19751975-2013Classical stellarator格赖夫斯瓦尔德 Max-Planck-Institut für Plasmaphysik0.72 m/0.15 m1.4 TTest lower hybrid heating
Wendelstein 7-A关闭?1975-1985Classical stellarator加兴 Max-Planck-Institut für Plasmaphysik2 m/0.1 m3.5 TFirst "pure" stellarator without plasma current
Heliotron-E关闭?1980-?HeliotronTemplate:Country data JP2.2 m/0.2 m1.9 T
Heliotron-DR关闭?1981-?HeliotronTemplate:Country data JP0.9 m/0.07 m0.6 T
Auburn Torsatron关闭?1984-1990Torsatron奥本 奧本大學0.58 m/0.14 m0.2 T
Wendelstein 7-AS德语Wendelstein 7-AS关闭1982-19881988-2002Modular, advanced stellarator加兴 Max-Planck-Institut für Plasmaphysik2 m/0.13 m2.6 TFirst H-mode in a stellarator in 1992
Compact Helical System (CHS)关闭?1989-?Heliotron土岐 Template:Country data JPNational Institute for Fusion Science1 m/0.2 m1.5 T
Compact Auburn Torsatron (CAT)关闭?-19901990-2000Torsatron奥本 奧本大學0.53 m/0.11 m0.1 TStudy magnetic flux surfaces
H-1NF[35]运行中1992-Heliac堪培拉 Research School of Physical Sciences and Engineering, Australian National University1.0 m/0.19 m0.5 T
TJ-K[36]运行中TJ-IU1994-Torsatron基尔 斯图加特大学0.60 m/0.10 m0.5 TTeaching
TJ-II[37]运行中1991-1997-flexible Heliac马德里 National Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat)1.5 m/0.28 m1.2 TStudy plasma in flexible configuration
LHD (Large Helical Device)[38]运行中1990-19981998-Heliotron土岐 Template:Country data JPNational Institute for Fusion Science3.5 m/0.6 m3 TDetermine feasibility of a stellarator fusion reactor
HSX (Helically Symmetric Experiment)运行中1999-Modular, quasi-helically symmetric麦迪逊 University of Wisconsin–Madison1.2 m/0.15 m1 Tinvestigate plasma transport
Heliotron J (Heliotron J)[39]运行中2000-Heliotron京都 Template:Country data JPInstitute of Advanced Energy1.2 m/0.1 m1.5 TStudy helical-axis heliotron configuration
Uragan-2(M)[40]???Heliotron, Torsatron哈尔科夫 National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.7 m/0.24 m2.4 T?
Uragan-3 (M​(乌克兰语)[40]???Torsatron哈尔科夫 National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.0 m/0.12 m1.3 T?
Columbia Non-neutral Torus (CNT)运行中?2004-Circular interlocked coils纽约 哥伦比亚大学0.3 m/0.1 m0.2 TStudy of non-neutral plasmas
Quasi-poloidal stellarator (QPS)[41][42]取消2001-2007-Modular橡树岭 橡树岭国家实验室0.9 m/0.33 m1.0 TStellarator research
NCSX (National Compact Stellarator Experiment)取消2004-2008-Helias普林斯顿 普林斯顿等离子体物理实验室1.4 m/0.32 m1.7 THigh-β stability
Compact Toroidal Hybrid (CTH)运行中?2007?-Torsatron奥本 奧本大學0.75 m/0.2 m0.7 THybrid stellarator/tokamak
HIDRA (Hybrid Illinois Device for Research and Applications)[43]运行中2013-2014 (WEGA)2014-?厄巴纳 (伊利诺伊州) University of Illinois at Urbana - Champaign0.72 m/0.19 m0.5 T仿星器托卡马克合二为一的装置
UST_2[44]运行中20132014-modular three period quasi-isodynamic马德里 Charles III University of Madrid0.29 m/0.04 m0.089 T3D printed stellarator
Wendelstein 7-X[45]运行中1996-20152015-Helias格赖夫斯瓦尔德 马克斯-普朗克等离子体物理研究所5.5 m/0.53 m3 TSteady-state plasma in fully optimized stellarator
SCR-1 (Stellarator of Costa Rica)运行中2011-20152016-Modular卡塔戈 Instituto Tecnológico de Costa Rica0.14 m/0.042 m0.044 T

反场箍缩英语Reversed_field_pinch编辑

磁镜编辑

球形马克英语Spheromak编辑

  • Template:Sustained Spheromak Physics Experiment

场反向位形英语Field-Reversed Configuration编辑

Open field lines编辑

Plasma pinch编辑

  • Trisops - 2 facing theta-pinch guns

懸浮偶極编辑

惯性约束编辑

激光驱动编辑

当前或正在建设的实验设施编辑

固态激光器编辑
  • National Ignition Facility (NIF) at LLNL in California, US[50]
  • Laser Mégajoule of the Commissariat à l'Énergie Atomique in Bordeaux, France (under construction)[51]
  • OMEGA EL Laser at the Laboratory for Laser Energetics, Rochester, US
  • Gekko XII at the Institute for Laser Engineering in Osaka, Japan
  • ISKRA-4 and ISKRA-5 Lasers at the Russian Federal Nuclear Center VNIIEF[52]
  • Pharos laser, 2 beam 1 kJ/pulse (IR) Nd:Glass laser at the Naval Research Laboratories
  • Vulcan laser at the central Laser Facility, Rutherford Appleton Laboratory, 2.6 kJ/pulse (IR) Nd:glass laser
  • Trident laser, at LANL; 3 beams total; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns.
气体激光器编辑
  • NIKE laser at the Naval Research Laboratories, Krypton Fluoride gas laser
  • PALS, formerly the "Asterix IV", at the Academy of Sciences of the Czech Republic,[53] 1 kJ max. output iodine laser at 1.315 micrometre fundamental wavelength

已拆除实验设施编辑

固态激光器编辑
  • 4 pi laser built during the mid 1960s at Lawrence Livermore National Laboratory
  • Long path laser built at LLNL in 1972
  • The two beam Janus laser built at LLNL in 1975
  • The two beam Cyclops laser built at LLNL in 1975
  • The two beam Argus laser built at LLNL in 1976
  • The 20 beam Shiva laser built at LLNL in 1977
  • 24 beam OMEGA laser completed in 1980 at the University of Rochester's Laboratory for Laser Energetics
  • The 10 beam Nova laser (dismantled) at LLNL. (First shot taken, December 1984 – final shot taken and dismantled in 1999)
气体激光器编辑
  • "Single Beam System" or simply "67" after the building number it was housed in, a 1 kJ carbon dioxide laser at Los Alamos National Laboratory
  • Gemini laser, 2 beams, 2.5 kJ carbon dioxide laser at LANL
  • Helios laser, 8 beam, ~10 kJ carbon dioxide laser at LANLMedia at Wikimedia Commons
  • Antares laser at LANL. (40 kJ CO2 laser, largest ever built, production of hot electrons in target plasma due to long wavelength of laser resulted in poor laser/plasma energy coupling)
  • Aurora laser 96 beam 1.3 kJ total krypton fluoride (KrF) laser at LANL
  • Sprite laser few joules/pulse laser at the Central Laser Facility, Rutherford Appleton Laboratory

Z-箍缩编辑

惯性静电约束编辑

磁化靶聚变编辑

  • FRX-L
  • FRCHX
  • General Fusion - under development
  • LINUS project

参考资料编辑

  1. ^ ASDEX at the Max Planck Institute for Plasma Physics. [2019-03-30]. (原始内容存档于2019-03-30). 
  2. ^ Forschungszentrum Jülich - Plasmaphysik (IEK-4). www.fz-juelich.de. (原始内容存档于2012-12-27) (德语). 
  3. ^ Progress in Fusion Research - 30 Years of TEXTOR
  4. ^ Tokamak Fusion Test Reactor. 2011-04-26. (原始内容存档于2011-04-26). 
  5. ^ EFDA-JET, the world's largest nuclear fusion research experiment. 2006-04-30. (原始内容存档于2006-04-30). 
  6. ^ :::. Instituto Nacional de Investigaciones Nucleares | Fusión nuclear .. 2009-11-25. (原始内容存档于2009-11-25). 
  7. ^ All-the-Worlds-Tokamaks. www.tokamak.info. (原始内容存档于2019-04-15). 
  8. ^ Yoshikawa, M. JT-60 Project. Fusion Technology 1978. 2006-10-02, 2: 1079. Bibcode:1979fute.conf.1079Y. 原始内容存档于2006-10-02. 
  9. ^ diii-d:home [MFE: DIII-D and Theory]. fusion.gat.com. [2018-09-04]. (原始内容存档于2018-09-04) (英语). 
  10. ^ DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC). science.energy.gov. [2018-09-04]. (原始内容存档于2018-09-04) (美国英语). 
  11. ^ U of S. 2011-07-06. 原始内容存档于2011-07-06. 
  12. ^ Tore Supra. www-fusion-magnetique.cea.fr. [2018-09-04]. (原始内容存档于2013-05-02). 
  13. ^ Wayback Machine. 2014-05-12. (原始内容存档于2014-05-12). 
  14. ^ COMPASS - General information. 2013-10-25. (原始内容存档于2013-10-25). 
  15. ^ Wayback Machine. 2006-04-24. (原始内容存档于2006-04-24). 
  16. ^ MIT Plasma Science & Fusion Center: research>alcator>. 2015-07-09. 原始内容存档于2015-07-09. 
  17. ^ Centro de Fusão Nuclear. www.cfn.ist.utl.pt. (原始内容存档于2010-03-07). 
  18. ^ EPFL. crppwww.epfl.ch. (原始内容存档于2005-12-19). 
  19. ^ Pegasus Toroidal Experiment. pegasus.ep.wisc.edu. (原始内容存档于2020-06-22) (英语). 
  20. ^ NSTX-U. nstx-u.pppl.gov. [2018-09-04]. (原始内容存档于2018-09-05). 
  21. ^ MAST - the Spherical Tokamak at UKAEA Culham. 2006-04-21. (原始内容存档于2006-04-21). 
  22. ^ The SST-1 Tokamak Page. 2014-06-20. 原始内容存档于2014-06-20. 
  23. ^ EAST (HT-7U Super conducting Tokamak)----Hefei Institutes of Physical Science, The Chinese Academy of Sciences. english.hf.cas.cn. (原始内容存档于2019-09-27). 
  24. ^ Wayback Machine. 2008-05-30. (原始内容存档于2008-05-30). 
  25. ^ Wayback Machine. 2013-11-10. (原始内容存档于2013-11-10). 
  26. ^ ST25 » Tokamak Energy. [2019-03-30]. (原始内容存档于2019-03-26). 
  27. ^ ST40 » Tokamak Energy. [2019-03-30]. (原始内容存档于2019-03-26). 
  28. ^ The JT-60SA project. [2020-09-17]. (原始内容存档于2016-03-05). 
  29. ^ ITER - the way to new energy. ITER. (原始内容存档于2013-12-09) (英语). 
  30. ^ The DTT Project. [2019-03-30]. (原始内容存档于2019-03-30). 
  31. ^ Ignited plasma in Tokamaks - The IGNITOR project. www.frascati.enea.it. (原始内容存档于2019-03-21). 
  32. ^ The Russian-Italian IGNITOR Tokamak Project: Design and status of implementation (2017). [2019-03-30]. (原始内容存档于2019-03-30). 
  33. ^ Gao, X. Update on CFETR Concept Design (PDF). www-naweb.iaea.org. 2013-12-17. (原始内容 (PDF)存档于2019-03-30). 
  34. ^ Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C. Design concept of K-DEMO for near-term implementation. Nuclear Fusion. 2015, 55 (5): 053027. Bibcode:2015NucFu..55e3027K. ISSN 0029-5515. doi:10.1088/0029-5515/55/5/053027 (英语). 
  35. ^ Department, Head of. Plasma Research Laboratory - PRL - ANU. prl.anu.edu.au. (原始内容存档于2010-02-13) (英语). 
  36. ^ TJ-K - FusionWiki. fusionwiki.ciemat.es. (原始内容存档于2019-03-30) (英语). 
  37. ^ CIEMAT. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas. www.ciemat.es. (原始内容存档于2006-07-19) (西班牙语). 
  38. ^ Large Helical Device Project. www.lhd.nifs.ac.jp. (原始内容存档于2010-04-12). 
  39. ^ Heliotron J Project. http://www.iae.kyoto-u.ac.jp/en/joint/heliotron-j.html. (原始内容存档于2018-10-24).  外部链接存在于|work= (帮助)
  40. ^ 40.0 40.1 History | ННЦ ХФТИ. www.kipt.kharkov.ua. (原始内容存档于2018-10-27). 
  41. ^ QPS Home Page. [2019-03-30]. (原始内容存档于2016-04-24). 
  42. ^ http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf
  43. ^ HIDRA – Hybrid Illinois Device for Research and Applications | CPMI - Illinois. cpmi.illinois.edu. (原始内容存档于2019-03-30) (美国英语). 
  44. ^ UST_2 at Vying Fusion Energy. [2019-03-30]. (原始内容存档于2018-12-28). 
  45. ^ Wendelstein 7-X. www.ipp.mpg.de/w7x. (原始内容存档于2019-03-30). 
  46. ^ CONSORZIO RFX - Ricerca Formazione Innovazione. www.igi.cnr.it. (原始内容存档于2009-09-01). 
  47. ^ Hartog, Peter Den. MST - UW Plasma Physics. plasma.physics.wisc.edu. (原始内容存档于2019-03-13). 
  48. ^ Liu, Wandong; et, al. Overview of Keda Torus eXperiment initial results. Nuclear Fusion. 2017, 57 (11): 116038. ISSN 0029-5515. doi:10.1088/1741-4326/aa7f21. 
  49. ^ Levitated Dipole Experiment. 2004-08-23. (原始内容存档于2004-08-23). 
  50. ^ Lasers, Photonics, and Fusion Science: Science and Technology on a Mission. www.llnl.gov. (原始内容存档于2009-08-22) (英语). 
  51. ^ CEA - Laser Mégajoule. www-lmj.cea.fr. (原始内容存档于2018-10-02). 
  52. ^ RFNC-VNIIEF - Science - Laser physics. 2005-04-06. (原始内容存档于2005-04-06). 
  53. ^ PALS, Laser. archive.is. 2001-06-27. (原始内容存档于2001-06-27). 
  54. ^ University of Nevada, Reno. Nevada Terawatt Facility. archive.is. 2000-09-19. (原始内容存档于2000-09-19). 
  55. ^ Sandia National Laboratories: National Security Programs. www.sandia.gov. (原始内容存档于2012-07-16) (英语). 
  56. ^ PULSOTRON. pulsotron.org. (原始内容存档于2019-04-01).