Գիսաստղ

Գիսաստղ (Երկար մազեր՝ ծամեր ունեցող, պոչավոր, միջազգային comet բառը ծագել է հունարեն՝ κομήτης, komḗtēs – մազավոր բառից), փոքր երկնային մարմին, որը ունի մշուշոտ տեսք, սովորաբար պտտվում է Արեգակի շուրջ շատ ձգված ուղեծրով։ Արեգակին մոտենալու հետ զուգընթաց գիսաստղի շուրջ առաջանում է վարս (ժամանակավոր մթնոլորտ) և որոշ դեպքերում գազից և փոշուց կազմված պոչ։ Այս երկու երևույթները առաջանում են արեգակի ճառագայթման և արեգակնային քամու գիսաստղի միջուկի հետ փոխազդեցության արդյունքում։ Գիսաստղերը մարդկությանը հայտնի են անհիշելի ժամանակներից։

Ձայնային ֆայլն ստեղծվել է հետևյալ տարբերակի հիման վրա (մարտի 16, 2017) և չի պարունակում այս ամսաթվից հետո կատարված փոփոխությունները։ Տես նաև ֆայլի մասին տեղեկությունները կամ բեռնիր ձայնագրությունը Վիքիպահեստից։ (Գտնել այլ աուդիո հոդվածներ)
Թեմպլ գիսաստղը բախվում է Դիփ Իմպաքթի հետ67P/Չուրյումով–Գերասիմենկո գիսաստղի ուղեծրում Ռոզետան
17P/Հոլմս գիսաստղը և նրա կապույտ իոնիզացված պոչըՎիլդ 2 գիսաստղը, որին այցելել է Սթարդասթ ԱՄԿ-ն
Հեյլ-Բոպի գիսաստղը լուսանկարված Խորվաթիայից 1997 թվականինԼովջոյի գիսաստղը լուսանկարված ուղեծրից
Գիսաստղեր – միջուկ, վարս և պոչ՝
  • Վերևում՝ 9P/Թեմպլ (impactor collision: Դիփ Իմփաքթ), 67P/Չուրյումով–Գերասիմենկո (Ռոզետա)
  • Մեջտեղում՝ 17P/Հոլմսը և նրա կապույտ իոնիզացված պոչը, 81P/Վիլդ (Վիլդ 2) (Սթարդասթ)
  • Ներքևում՝ Հեյլ-Բոպպի գիսաստղը լուսանկարված Երկրից 1997 թվականին, C/2011 W3 (Լովջոյ) լուսանկարված Երկրի ուղեծրից
Հեյլ-Բոպպի գիսաստղը
ԻՌԱՍ-Արակի-Ալկոկ գիսաստղը, լուսանկարված ինֆրակարմիր լույսում Ինֆրակարմիր աստղագիտական արբանյակից (IRAS)
103P/Հարտլի գիսաստղի միջուկը արտանետվող նյութերի շիթերով, լուսանկարվել է ավտոմատ միջմոլորակային կայանից։ Միջուկի չափերն են՝ մոտ 2 կմ երկարություն և 400 մետր լայնություն ամենանեղ մասում։

Գիսաստղի աստղագիտական սիմվոլն է (), որը բաղկացած է փոքր սկավառակից երեք գծերով, որոնք ցույց են տալիս պոչը[1]։

Տիեզերքի խորքից ժամանող գիսաստղերը, երևում են որպես մշուշոտ մարմիններ, որոնց հետևից ձգվում է պոչ, որը երբեմն հասնում է մի քանի միլիոն կիլոմետրի։ Գիսաստղի միջուկը իրենից ներկայացնում է պինդ մասնիկներից և սառույցից կազմված մարմին, այն շրջապատված է մշուշոտ ծածկույթով, որը կոչվում է վարս։ Մի քանի կիլոմետր տրամագծով միջուկը կարող է ունենալ շուրջ 80 հազար կմ տրամագծով վարս։ Արեգակնային լույսի հոսքերը դուրս են մղում գազի մասնիկները վարսից և մղում են դեպի ետ, ձևավորելով մեծ մշուշոտ պոչ, որը շարժվում է գիսաստղի հետևից տարածության մեջ։ Գիսաստղերը տարբերվում են աստերոիդներից պոչի և վարսի առկայությամբ։ Այնուամենայնիվ, ծեր գիսաստղները, որոնք արդեն շատ անգամ են անցել Արեգակի մոտով, կորցրել են իրենց մեջ պարունակող ցնդող նյութերի համարյա ամբողջ պաշարը, և վերածվել են փոքր ձգված ուղեծրերով աստերոիդների[2]։ Ենթադրվում է, որ աստերոիդները ունեն այլ ծագման աղբյուր, քան գիսաստղերը։ Աստերոիդները ձևավորվել են Յուպիտերի ուղեծրի ներսում, իսկ գիսաստղերը արտաքին Արեգակնային համակարգում[3][4]։ Սակայն վերջերս կատարված հիմնական գոտու գիսաստղերի և ակտիվ կենտավրոսների հայտնաբերումը լղոզեցին աստերոիդների և գիսաստղերի տարբերակումը։

Գիսաստղերի պտույտի պարբերությունները գտնվում են չափացանց լայն միջակայքում, տատանվելով մի քանի տարուց մինչև հարյուր հազարավոր տարիներ։ Կարճ պարբերությամբ գիսաստղերը առաջացել են Կոյպերի գոտում, կամ նրան հաջորդող Ցրված սկավառակում[5], որոնք ընկած են Նեպտունի ուղեծրից այն կողմ։ Ենթադրաբար, երկար պարբերությամբ գիսաստղերերը հասնում են մեզ Օորտի ամպից, որում գտնվում են հսկայական քանակով գիսաստղային միջուկներ։ Արեգակնային համակարգի ծայրամասերում գտնվող մարմինները որպես կանոն բաղկացած են ցնդող նյութերից (ջրային, մեթանային և այլ սառույցներ), որոնք ցնդում են Արեգակին մոտենալիս։ Ավելի հազվագյուտ հիպերբոլիկ գիսաստղերը անցնում են ներքին Արեգակնային համակարգով և դուրս են շպրտվում միջաստղային տարածություն հիպերբոլիկ հետագծերով։ Էկզոգիսաստղերը, գիսաստղեր Արեգակնային համակարգից դուրս, նույնպես դիտարկվել են, և կարող են հանդիպել Ծիր կաթին գալակտիկայում[6]։

2014 թվականի օգոստոսի դրությամբ հայտնի էին 5186 գիսաստղեր[7], և նրանց քանակը անընդհատ աճում է։ Այնուամենայնիվ, սա ընդհանուր հավանական գիսաստղերի բնակչության միայն չնչին մասն է, քանի որ արտաքին Արեգակնային համակարգում հնարավոր է, որ կան տրիլիոնի կարգի գիսաստղանման մարմիններ[8]։ Գիսաստղների պայծառությունը մեծապես կախված են նրանց պերիհելիի կետում Արեգակից հեռավորությունից։ Բոլոր գիսաստղներից միայն մի փոքր մասն է մոտենում Արեգակին ու Երկրագնդին այնքան, որպեսզի նրանք դառնան տեսանելի անզեն աչքով։ Նրանցից առավել նկատելիները, երբեմն անվանում են «Մեծ գիսաստղեր»։ Մոտավորապես մեկ գիսաստղ հնարավոր է լինում դիտարկել անզեն աչքով ամեն տարի[9]։

2014 թվականի հունվարի 22-ին ԵՏԳ գիտնականները հայտարարեցին ջրի գոլորշու արտանետման մասին գաճաճ մոլորակ Սերեսի մակերևույթից[10], որը աստերոիդների գոտու ամենամեծ մարմինն է։ Այս հայտնագործությունը անսպասելի էր, քանի որ մինչ այդ աստերոիդների մակերևույթից արտանետումներ չէին գրանցվել։ Այս հայտնագործությունը մշուշոտ է դարձնում գիսաստղերի և աստերոիդների միջև սահմանը։

Անվանաբանությունխմբագրել

Հալլեյի գիսաստղը, անվանվել է աստղագետ Էդմունդ Հալլեյի պատվին, ով հաշվարկել է նրա ուղեծիրը։

Գիսաստղերին տրված անվանումները վերջին երկու հարյուրամյակների ընթացքում հետևում են մի քանի տարբեր սկզբունքների։ Մինչ որևէ համակարգված անվանումաբանության ստեղծվելը գիսաստղերը անվանում էին տարբեր ձևերով։ Մինչև վաղ 20-րդ դարը գիսաստղերի մեծ մասին անվանում էին իրենց հայտնվելու տարով, որոշ առանձնահատուկ դեպքերում ավելացնելով ածականներ, օրինակ՝ «1680 թվականի մեծ գիսաստղ» (Կիրխի Գիսավոր), «1882 թվականի մեծ սեպտեմբերյան գիսաստղ», կամ «1910 թվականի մեծ գիսաստղ» («1910 թվականի մեծ հունվարյան գիսավոր»)։

Այն բանից հետո, երբ Էդմունդ Հալլեյը ապացուցեց, որ 1531, 1607 և 1682 թվականներին հայտնված գիսաստղերը միևնույն մարմինն էին և հաջողությամբ կանխագուշակեց այս գիսաստղի վերադարձը 1759 թվականին, այս գիսաստղը հայտնի դարձավ որպես Հալլեյի գիսաստղ[11]։ Միևնույն սկզբունքով, երկրորդ և երրորդ հայտնի դարձած պարբերական գիսաստղերը անվանվեցին Էնկեյի գիսաստղ[12] և Բիելայի գիսաստղ[13] նրանց ուղեծրերը հաշվարկած աստղագետների անուններով, այլ ոչ նրանց հայտնաբերողների անուններով։ Ավելի ուշ պարբերական գիսաստղերը սկսեցին անվանել նրանց հայտնաբերողների անուններով, սակայն միայն մեկ անգամ ի հայտ եկած գիսաստղերը շարունակում էին անվանել նրանց հայտնաբերման տարով։

Վաղ 20-րդ դարում գիսաստղերի անվանումը նրանց հայտնաբերողների անուններով դարձավ համընդհանուր, և այսպես էլ շարունակվում է մինչ այժմ։ Գիսաստղը անվանում են մինչև երեք իրարից անկախ հայտնաբերող անձանց անուններով։ Վերջին տարիներին բազմաթիվ գիսաստղեր են հայտնաբերվել աստղագետների մեծ խմբերի կողմից, ովքեր աշխատում են տարբեր աստղագիտական գործիքներ օգտագործելով, և այս դեպքում գիսաստղերը կարող են անվանվել այդ գործիքի անունով։ Օրինակ՝ ԻՌԱՍ-Արակի-Ալկոկ գիսաստղը հայտնաբերվել է իրարից անկախ ԻՌԱՍ արբանյակի և սիրող աստղագետներ Գենիչի Արակիի ու Ջորջ Ալկոկի կողմից։ Նախկինում, երբ մեկ անձնավորություն կամ խումբ հայտնաբերում էր մի քանի գիսաստղեր, նրանց տարբերում էին ավելացնելով թվեր հայտնաբերողների անուններին (սակայն միայն պարբերական գիսաստղերի համար), այսպես՝ Շումեյկեր-Լևի 1 – 9։ Այսօր, չափազանց մեծ թվով գիսաստղեր են հայտնաբերվում, օգտագործելով զարգացած աստղագիտական համակարգեր, ինչը և դարձրել է այս անվանման համակարգը ոչ արդյունավետ, և հնարավոր չի դառնում վերջնականորեն տարբերակել գիսաստղերը, համոզված լինելով որ անվանումները ունիկալ են։ Դրա փոխարեն շփոթություններից խուսափելու համար օգտագործվում է գիսաստղերի համակարգված նշանակումները։

Մինչև 1994 թվականը գիսաստղերին սկզբից տալիս էին ժամանակավոր անվանումներ, որոնք կազմված էին նրանց հայտնաբերման տարուց, որին հաջորդում էր փոքրատառ տառ, որը ներկայացնում էր նրա հաջորդական համարը տվյալ տարվա ընթացքում (օրինակ՝ Գիսաստղ 1969i (Բենետ) հանդիսանում էր 1969 թվականին հայտնաբերված 9-րդ գիսաստղը)։ Երբ գիսաստղը անցնում էր իր պերիկենտրոնը և նրա ուղեծիրը հաշվարկվում էր, գիսաստղին տրվում էր մշտական անուն, որում նշվում էր նրա պերիկենտրոնի անցման տարին, որին հաջորդում էր հռոմեական թիվ, որը ներկայացնում էր այդ տարվա ընթացքում պերիկենտրոնի անցման հաջորդական համարը։ Համապատասխանաբար Գիսաստղ 1969i գիսաստղը դառնում էր Գիսաստղ 1970 II[14]։

Հայտնաբերվող գիսաստղերի քանակի աճի հետ այս համակարգը նույնպես դարձավ ոչ հարմար, և 1994 թվականին Միջազգային աստղագիտական միությունը հաստատեց նոր անվանումների համակարգ։ Գիսաստղերը այժմ անվանվում են նրանց հայտնաբերման տարով, որին հաջորդում է նրանց հայտնաբերման կիսա-ամսին համապատասխանող տառ, և իրենց հայտնաբերման հաջորդական թիվը (նման համակարգ է օգտագործվում աստերոիդների անվանումներում)։ Այս համակարգով, 2014 թվականի փետրվարի երկրորդ կեսին չորրորդ հայտնաբերված գիսաստղը կստանա 2014 D4 անունը։

Գիսաստղերի անվանը նաև ավելացվում է նախածանց, որը ցույց է տալիս տվյալ գիսաստղի տեսակը՝

  • P/ – պարբերական գիսաստղ (սահմանվում են, որպես ցանկացած գիսաստղ, որի ուղեծրային պարբերությունը փոքր է, քան 200 տարին, կամ կան նրա մեկից ավելի պերիկենտրոնների անցումների հաստատված դիտարկումներ).[15]։
  • C/ – ոչ-պարբերական գիսաստղ (սահմանվում է, որպես ցանկացած գիսաստղ, որը «ոչ» պարբերական է և չի համապատասխանում նախորդ կետում սահմանված պայմաններին)։
  • X/ – գիսաստղ, որի ուղեծիրը հնարավոր չի եղել ճշգրիտ հաշվարկել (հիմնականում, հնում հայտնաբերված գիսաստղեր)։
  • D/ – պարբերական գիսաստղ, որը անհետացել է (կորել, անհետացել կամ մասերի է բաժանվել)[15]։
  • A/ – ցույց է տալիս մարմին, որը սխալմամբ գնահատվել է որպես գիսաստղ, սակայն հանդիսանում է փոքր մոլորակ։

Օրինակ, Հեյլ-Բոպպի գիսաստղի նշանակումն է C/1995 O1։ Իրենց երկրորդ դիտարկված պերիկենտրոնի անցումից հետո, պարբերական գիսաստղները նաև ստանում են իրենց հայտնաբերման հերթական համարը[16]։ Այսպիսով Հայյելի գիսաստղը, որը առաջինն է նշվել որպես պարբերական, ունի հետևյալ նշանակումը՝ 1P/1682 Q1։ Գիսաստղերը, որոնք սկզբից ստացել են փոքր մոլորակի նշանակում, պահպանում են նաև այդ նշանակման տառերը, այսպես օրինակ՝ P/2004 EW38 (Կատալինա-ԼԻՆԵԱՐ)։

Արեգակնային համակարգում կան միայն հինգ մարմիններ, որոնք նշվում են և որպես գիսաստղ, և որպես աստերոիդ՝ (2060) Քիրոն (95P/Քիրոն), (4015) Վիլսոն-Հարրինգտոն (107P/Վիլսոն-Հարրինգտոն), (7968) Էլստ-Պիսառո (133P/Էլստ-Պիսառո), (60558) Էչեքլուս (174P/Էչեքլուս), և (118401) ԼԻՆԵԱՐ (176P/ԼԻՆԵԱՐ)։

Կառուցվածքխմբագրել

Միջուկխմբագրել

Մոտ 6 կմ չափեր ունեցող Թեմփլ 1 և Հարթլիի 2 գիսաստղերի համադրությունը, լուսանկարները կատարվել են Դիփ իմփաքթ տիեզերանավից։

Հայտնի գիսաստղերի միջուկի չափերը տատանվում 100 մետրց մինչև 40 կիլոմետր։ Նրանք կազմված են քարերից, փոշուց, ջրային սառույցից և սառած գազերից, այնպիսիք ինչպիսին են ածխաթթու գազը, շմոլ գազը, մեթանը և ամոնիակը[17]։ Իրենց փոքր զանգվածի պատճառով, գիսաստղերի միջուկները չեն դառնում գնդաձև իրենց սեփական ձգողության ուժի ազդեցության տակ, և հետևաբար ունեն անկանոն ձև։

Որոշ գիսաստղերի միջուկների պարամետրրը
ԱնունըՉափերը
կմ
Խտությունը
գ/սմ3
զանգվածը
կգ
Հալլեյի գիսաստղ15 × 8 × 8[18]0,6[19]3×1014
Թեմփլ 17,6 × 4,9[20]0,62[21]7,9×1013
19P/Բորելի8 × 4×40,3[21]2×1013
81P/Ուայլդ5,5 × 4,0 × 3,3[22]0,6[21]2,3×1013
Բորելիի գիսաստղը արտանետում է շիթեր, սակայն չունի մակերևութային սառույց
Ուայլդի 2 գիսաստղի արտանետումներ է ունենում բաց գույնի մասերից, իսկ մուգ մասերը ավելի չոր տեսք ունեն

Գիսաստղերը հաճախ անվանվում են «կեղտոտ ձնագնդեր»։ Վերջին հետազոտությունների արդյունքում պարզվել է, որ նրանց մակերևույթը ծածկված է չոր փոշով կամ քարերով, և սառույցները գտնվում են նրանց կեղևի տակ։ Գիսաստղերը, արդեն նշված գազերի հետ մեկտեղ, նաև պարունակում են տարաբնույթ օրգանական միացություններ։ Գիսաստղերի վրա պատահող միացություններից են մեթանոլը, ցիանական թթուն, ֆորմալդեհիդը, էթանոլը և էթանը, և նույնիսկ ավելի բարդ միացություններ, ինչպիսիք են երկարաշղթա ածխաջրածիններ և ամինաթթուներ[23][24][25]։ 2009 թվականին հաստատվեց գլիցին ամինաթթվի առկայությունը գիսաստղի փոշու մեջ, այս հայտնագործությունը կատարվեց ՆԱՍԱ-ի Սթարդասթ առաքելության շրջանակներում[26]։ 2011 թվականի ապրիլին հրապարակվեց Երկրի վրա գտնված երկնաքարերի ՆԱՍԱ-ի հետազոտության հաշվետվությունը, որում նշվում էր, որ հնարավոր է, որ աստերոիդների և գիսաստղերի վրա առաջանում են ԴՆԹ և ՌՆԹ մասնիկներ (ադենին, գուանին և դրանց հետ առնչվող օրգանական մոլեկուլներ)[27][28][29]։

Զարմանալի է, որ գիսաստղերի միջուկները ամենամուգ մարմիններն են Արեգակնային համակարգում։ Ջիոտո ավտոմատ միջմոլորակային կայանի տվյալներով Հալլեյի գիսաստղի միջուկը անդրադարձնում է նրա վրա ընկած լույսի միայն չորս տոկոսը[30], իսկ Դիփ Սփեյս 1 տիեզերանավի տվյալներով Բորելիի գիսաստղի մակերևույթը անդրադարձնում է իր վրա ընկնող լույսի ընդամենը 2,4%-3,0%[30]։ Համեմատելու համար, ասֆալտը անդրադարձնում է իր վրա ընկնող լույսի 7 տոկոսը։ Կարծիք կա, որ այս մուգ մակերևույթի նյութը բարդ օրգանական միացություններ են։ Արեգակի ջերմության տակ ցնդող նյութերը արտանետվում են գիսաստղի միջուկից, այնտեղ թողնելով ծանր երկարաշղթա օրգանական նյութերը, որոնք սովորաբար ավելի մուգ գույն ունեն (օրինակ՝ խեժը կամ նավթը)։ Փաստորեն չափազանց մուգ մակերևույթը ստիպում է գիսաստղերին կլանել նրանց վրա ընկնող լույսը, որի արդյունքում էլ արտանետվում են ցնդող նյութերը[31]։

Դիտարկվել է մինչև իսկ 30 կմ չափեր ունեցող գիսաստղի միջուկ[32], սակայն ճշգրտորեն սահմանել նրանց չափերը չափազանց բարդ է[33]։ P/2007 R5 գիսաստղի միջուկը հավանական է, որ ունի 100-200 մետր տրամագիծ[34]։ Չնայած դիտարկումների ճշգրտության աճին, ավելի փոքր գիսաստղեր չեն հայտնաբերվում, ինչը բերում է այն եզրահանգման, որ 100 մետրից փոքր տրամագծով գիսաստղեր չեն պատահում[35]։ Հայտնի գիսաստղերի միջուկի միջին խտությունը գնահատվում է մոտ 0,6 գ/սմ3[21]։ Իրենց փոքր զանգվածի պատճառով գիսաստղերի միջուկները չեն կարողանում դառնալ գնդաձև իրենց սեփական ձգողության ուժի ազդեցության տակ և այդ պատճառով ունեն անկանոն ձև[36]։

Ենթադրվում է, որ երկրին մոտեցող աստերոիդների մոտավորապես վեց տոկոսը կազմում են ծերացած գիսաստղերը, որոնք այլևս չեն արտանետում նյութեր[37], դրանցից են՝ (14827) Հիպնոսը և (3552) Դոն Կիխոտը։

Վարս և պոչխմբագրել

Հոլմսի գիսաստղը (17P/Հոլմս) 2007 թվականին երևում էր կապույտ իոնային պոչ։
Հաբլ աստղադիտակից կատարված ԻՍՕՆ գիսաստղի լուսանկարը պերիկենտրոնով անցումից առաջ[38]։
Սայդինգ Սփրինգ գիսաստղը, որն անցել է Մարսի մոտով 2014 թվականի հոկտեմբերի 19-ին (Հաբլ, 11 մարտ 2014)։

Արտաքին Արեգակնային համակարգում գիսաստղերը մնում են սառած վիճակում և չափազանց դժվար են հայտնաբերվում Երկրի վրայից կատարվող դիտարկումներով, իրենց փոքր չափերի և մուգ գույնի պատճառով։ Հաբլ տիեզերական աստղադիտակով հնարավոր է եղել Կոյպերի գոտում կատարել ոչ ակտիվ գիսաստղի միջուկների դիտարկումներ[39][40], սակայն այս դիտարկումները կասկածի տակ են դրվել[41][42] և դեռևս չեն հաստատվել։ Երբ գիսաստղը հասնում է Արեգակնային համակարգի ներքին մասերը, արեգակի ճառագայթման ազդեցության տակ գիսաստղի միջուկում առկա ցնդող նյութերը գոլորշիանում են և մղվում են միջուկից դուրս, իրենց հետ տանելով փոշու հատիկներ։ Արտանետվող փոշու և գազերի շիթերը միաձուլվում են և առաջացնում հսկայական, սակայն անկայուն մթնոլորտ գիսաստղի շուրջ, այն անվանում են վարս։ Վարսի վրա ազդող արեգակի ճառագայթման ճնշումը և արեգակնային քամին մղում են վարսի մասնիկներին գիսաստղի շարժման հակադարձ ուղղությամբ, առաջացնելով պոչ։

Պոչը և վարսը երկուսն էլ լուսավորվում են Արեգակի կողմից, և կարող են դառնալ տեսանելի Երկրի մակերևույթից, գիսաստղի ներքին Արեգակնային համակարգով անցման ժամանակ, փոշին հիմնականում անդրադարձնում է Արեգակի լույսը, իսկ գազերը ունեն նաև սեփական լուսատվություն, որը ծագում է իոնացումից։ Գիսաստղերի մեծամասնությունը չափազանց աղոտ են, որպեսզի հնարավոր լինի դիտարկել նրանց անզեն աչքով։ Այնուամենայնիվ, ամեն տասնամյակի ընթացքում պատահում են մի քանի պայծառ գիսաստղեր, որոնց կարելի է դիտարկել առանց աստղադիտակների։ Որոշ դեպքերում գիսաստղերից տեղի են ունենում հսկայական և անսպասելի գազի և փոշու արտանետումներ, որոնց ընթացքում վարսի և պոչի չափերը ժամանակավորապես մեծապես աճում են։ Այսպես պատահեց 2007 թվականին Հոլմսի գիսաստղի հետ[43]։

Գիսաստղի դիագրամ, որը ցույց է տալիս փոշու պոչը, նրա հետքը (կամ հակապոչը) և իոնային գազերի պոչը, որը առաջանում է արեգակնային քամու ազդեցության տակ։

Փոշու և գազերի հոսքերը ամեն մեկը ձևավորում է իր առանձին պոչը, որոնք մի փոքր իրարից շեղված են։ Փոշու պոչը ուղղվում է գիսաստղի ուղեծրով ետ այնպես, որ այն հաճախ ձևավորում է աղեղաձև գիծ, այն հաճախ անվանում են II տեսակի կամ փոշու պոչ։ Միևնույն ժամանակ, իոնային կամ I տեսակի պոչը, որը կազմված է գազերից, միշտ ուղղված է ուղիղ Արեգակի հակառակ կողմ, քանի որ այս գազերը ավելի ուժեղ են վանվում արեգակնային քամու կողմից քան փոշին, տարածվոլով մագնիսական դաշտի գծերով, այլ ոչ թե ուղեծրով։ Որոշ դեպքերում երևում է նաև կարճ պոչ, որն ուղղված է իոնային և փոշու պոչերի հակառակ ուղղությամբ, այն անվանում են հակապոչ։ Այս երևույթը խորհրդավոր էր թվում, սակայն այն հանդիսանում է փոշու պոչի մի մասը, որը երևում է այդպես դիտարկման անկյան պատճառով[44]։

Մինչդեռ գիսաստղերի պինդ միջուկի չափերը փոքր են քան 50 կմ, վարսը կարող է լինել ավելի մեծ, քան Արեգակն է[45], իսկ իոնային պոչը ըստ դիտարկումների կարող է մեծ լինել մեկ աստղագիտական միավորից (150 միլիոն կմ)[46]։ Հակապոչի դիտարկումները մեծապես օգնեցին հայտնաբերելու արեգակնային քամին[47]։ Իոնային պոչը ձևավորվում է որպես արեգակնային ուլտրոմանուշակագույն ճառագայթման ֆոտոէլեկտրիկ փոխազդեցության արդյունք վարսի մասնիկների հետ։ Մասնիկները իոնացվելուց հետո պահպանում են դրական էլեկտրական լիցքերը, որոնք էլ արդյունքում ձևավորում են գիսաստղի շուրջ «ինդուկցված մագնիսոլորտ»։ Գիսաստղը և նրա ինդուկցված մագնիսական դաշտը խոչընդոտ են դառնում արեգակնային քամու մասնիկների համար։ Քանի որ արեգակնային քամու և գիսաստղի ուղեծրային արագությունները գերձայնային են, առաջանում է հարվածային ալիք ուղղված գիսաստղի շարժմանը հակառակ, արեգակնային քամու ուղղությամբ։ Այս հարվածային ալիքում շարժվում են գիսաստղային գազի հսկայական քանակներ (անվանում են «գրավված իոններ»), որոնք փոխազդելով արեգակնային քամու մասնիկների հետ «լցնում» են արեգակի մագնիսական դաշտը պլազմայով, այնպես, որ մագնիսական դաշտի գծերով «դասավորված» մասնիկները կազմում են գիսաստղի իոնային պոչ[48]։

Էնկեյի գիսաստղը կորցնում է իր պոչը

Երբ իոնային պոչի ծավալը հասնում է համապատասխան չափերի, մագնիսական դաշտի գծերը սեղմվում են իրար որոշակի հեռավորության վրա, իոնային պոչի երկայնքով, առաջացնելով մագնիսական միացման երևույթ։ Արդյունքում առաջանում է գիսաստղի «պոչի ընդհատում»[48]։ Այս երևույթը դիտարկվել է մի քանի գիսաստղերի դեպքերում, որոնցից ամենանշանակալին դիտարկվել է 2007 թվականի ապրիլի 20-ին, երբ Էնկեյի գիսաստղի իոնային պոչը ամբողջովին խզվել էր, երբ գիսաստղից արտանետվել էր չափազանց մեծ զանգվածով իոններ։ Այս դիտարկումը գրանցել էր ՍՏԵՐԵՕ սարքի միջոցով[49]։

1996 թվականին հաստատվեց, որ գիսաստղերը ճառագայթում են ռենտգենյան ճառագայթներ[50]։ Սա բավականին զարմանալի էր աստղագետների համար, քանի որ ռենտգենյան ճառագայթների արձակումը սովորաբար կապված է չափազանց բարձր ջերմաստիճանով մարմինների հետ։ Ռենտգենյան ճառագայթները առաջանում են գիսաստղի և արեգակնային քամու փոխազդեցությունից. երբ բարձր լարումով արեգակնային քամու իոնները անցնում են գիսաստղի մթնոլորտով, բախվում են գիսաստղից արտանետված ատոմների և մոլեկուլների հետ և «վերցնում են» էլեկտրոններ այդ ատոմներից։ Այս էլեկտրոնների փոխանցումը ուղեկցվում է ռենտգենյան ճառագայթների, ինչպես նաև ծայրագույն ուլտրամանուշակագույն ֆոտոնների արձակումով[51]։

2013 ԵՏԳ գիտնականները հայտնեցին այն մասին, որ Վեներա մոլորակի իոնոսֆերան արտամղվում է, ճիշտ այնպես, ինչպես գիսաստղերի իոնային պոչերը[52][53]։

Արտանետումներխմբագրել

Գազի և ձյան ժայթքումներ Հարթլիի 2 գիսաստղից

Գիսաստղի մակերևույթի անհավասար տաքացումը կարող է բերել նրան, որ մակերևույթի տակ առաջացած գազերը ճնշման տակ, մակերևույթի թույլ մասերից, դուրս են մղվում, ինչպես գեյզերները[54]։ Այս գազի և փոշու արտանետումները կարող են առաջացնել գիսաստղի միջուկի պտույտ, և նույնիսկ միջուկի տարանջատում մասերի[54]։ 2010 թվականին պարզվեց, որ նյութի արտանետումները գիսաստղերի միջուկներից կազմված են չոր սառույցից (սառած ածխաթթու գազ)[55]։ Սա պարզ դարձավ այն բանից հետո, երբ տիեզերական սարքը այնքան մոտեցավ գիսաստղին, որ հնարավոր դարձավ դիտարկել այն կետերը, որտեղից արտանետվող շիթերը դուրս են մղվում գիսաստղի միջուկից, և հնարավոր եղավ գրանցել այս շիթերում առկա մասնիկների ինֆրակարմիր սպեկտրը[56]։

Ուղեծրի առանձնահատկություններխմբագրել

Հիմնականում, գիսաստղերը Արեգակնային համակարգի փոքր մարմիններ են, որոնք ունեն ձգված էլիպտիկ ուղեծրեր, ինչի հետևանքով իրենց ուղեծրի մի մասում նրանք մոտենում են Արեգակին, իսկ մյուսում հեռանում մինչև Արեգակնային համակարգի եզրերը[57]։ Գիսաստղերը հաճախ դասակարգում են նրանց ուղեծրի պարբերության երկարություններով, որքան երկար է այս պարբերությունը այնքան ձգված էլիպս է ներկայացնում ուղեծիրը։

Կարճ պարբերությամբ գիսաստղերխմբագրել

Պարբերական գիսաստղեր կամ կարճ պարբերությամբ գիսաստղեր սովորաբար անվանում են այն գիսաստղերը, որոնց ուղեծրի պարբերությունը ավելի փոքր է, քան 200 տարին[58]։ Նրանք պտտվում են Արեգակի շուրջ մոտավորապես խավարածրի հարթության մեջ, մոլորակների հետ միևնույն ուղղությամբ[59]։ Այս գիսաստղերի ուղեծրերը իրենց ապոհելիում սովորաբար հասնում են մինչև արտաքին մոլորակների ուղեծրերը (Յուպիտեր և ավելի հեռու)։ Օրինակ, Հալլեյի գիսաստղը մի փոքր անցնում է Նեպտունի ուղեծիրը։ Գիսաստղերը, որոնց ուղեծրերը մոտ են հսկա մոլորակներին, սովորաբար անվանում են այդ մոլորակի «ընտանիքի» գիսաստղեր[60]։ Ենթադրվում է, որ այս ընտանիքները ձևավորվել են այդ մոլորակների կողմից որսված երկար պարբերությամբ գիսաստղերից փոխելով նրանց ուղեծրի պարբերությունները ավելի կարճի[61]։

Ներքևի սահմանին մոտ գտնվող Էնկեյի գիսաստղի ուղեծիրը չի հասնում Յուպիտերի ուղեծրին, այն անվանում են Էնկե-տեսակի գիսաստղ։ Կարճ պարբերությամբ գիսաստղերը, որոնց ուղեծրի պարբերությունը փոքր է, քան 20 տարին և ունեն ցածր ուղեծրի թեքում (մինչև 30 աստիճանը) անվանվում են «Յուպիտերի ընտանիքի գիսաստղեր»[62][63]։ Հալլեյի գիսաստղի նման գիսաստղերը, որոնց պարբերությունը ընկնում է 20 և 200 տարիների միջակայքում և թեքումը 0-ից 90 աստիճանների միջակայքում է, անվանում են «Հալլեյի տեսակի գիսաստղեր»[64][65]։ 2014 թվականի դրությամբ հայտնի էին ընդամենը 74 Հալլեյի տեսակի գիսաստղեր, այն դեպքում, երբ հայտնի Յուպիտերի ընտանիքի գիսաստղերի քանակը հասնում է 492[66]։

Վերջերս հայտնաբերված հիմնական գոտու գիսաստղերը կազմում են առանձին դաս, ունեն ավելի շրջանաձևին մոտ ուղեծրեր և պտտվում են Արեգակի շուրջ աստերոիդների գոտու մեջ[67]։

Իրենց ուղեծրերի ձգվածության պատճառով, գիսաստղերը հաճախ անցնում են հսկա մոլորակների մոտով, նրանց ուղեծրերը ենթարկվում են շարունակական փոփոխությունների[68]։ Կարճ պարբերությամբ գիսաստղերի մեծ մասի ապակենտրոնը համընկնում է գազային հսկաների ուղեծրային շառավիղների հետ, այս տեսակի ամենամեծ խումբը կազմում են Յուպիտերի ընտանիքի գիսաստղերը[63]։ Ակնհայտ է, որ Օորտի ամպից եկող գիսաստղերի ուղեծրերի վրա ուժեղ ազդեցություն են ունենում հսկա մոլորակների ձգողության դաշտերը։ Յուպիտերը առաջացնում է այս ազդեցություններից ամենահզորը, առաջացնելով ամենամեծ ուղեծրի շեղումները, քանի որ այն ավելին քան երկու անգամ ավելի մեծ զանգված ունի, քան բոլոր մնացած մոլորակները միասին վերցրած։ Այս փոփոխությունների արդյունքում երկար պարբերությամբ գիսաստղերը կարող են այնքան փոխել իրենց ուղեծրերը, որ դառնան կարճ պարբերությամբ գիսաստղեր[69][70]։

Հիմնվելով կարճ պարբերությամբ գիսաստղերի ուղեծրերի առանձնահատկությունների վրա, ենթադրվում է, որ նրանք առաջացել են կենտավրոսներից, Կոյպերի գոտուց և Ցրված սկավառակից[71] (մարմինների սկավառակ, որն ընկած է տրանսնեպտունյան շրջանում)։ Ի տարբերություն նրանց երկար պարբերությամբ գիսաստղերի առաջացման աղբյուրն է նշվում շատ ավելի հեռու գտնվող գնդաձև Օորտի ամպը[72]։ Ենթադրվում է, որ այս մեծ հեռավորությունների վրա Արեգակի շուրջ պտտվում են հսկայական քանակի գիսաստղանման մարմիններ, մոտավորապես շրջանաձև ուղեծրերով։ Ժամանակ առ ժամանակ արտաքին մոլորակների (Կոյպերի գոտու մարմինների դեպքում) կամ մոտ գտնվող աստղերի (Օորտի ամպի դեպքում) ձգողական ազդեցության պատճառով այս մարմինները շպրտվում են էլիպտիկ ուղեծրեր, ինչը նրանց ուղղում է դեպի Արեգակը, դարձնելով նրանց տեսանելի գիսաստղեր։ Ի տարբերություն, պարբերական գիսաստղերի, որոնց ուղեծրերի պարբերությունները հնարավոր է եղել պարզել անցյալում կատարված դիտարկումների արդյունքում, այսպիսի գիսաստղերի ի հայտ գալը անկանխատեսելի է, նրանց առաջացման մեխանիզմների պատճառով[31]։

Երկար պարբերությամբ գիսաստղերխմբագրել

Կոհուտեկի գիսաստղի (կարմիր) և Երկրի (կապույտ) ուղեծրերը, ցույց է տրվում գիսաստղի ուղեծրի ձգվածությունը ինչպես նաև նրա շարժման արագացումը Արեգակին մոտ դիրքում
Հիպերբոլիկ
գիսաստղերի
հայտնաբերումները
[73]
Տարիհատ
20138
201210
201112
20104
20098
20087
200712

Երկար պարբերությամբ գիսաստղերը ունեն չափազանց էքսցենտրիկ ուղեծրեր և 200-ից մինչև հազարավոր տարիների պարբերություններ[74]։ Պերիկենտրոնի մոտ 1-ից ավելի էքսցենտրիսիտետի առկայությունը դեռևս չի վկայում այն մասին, որ գիսաստղը դուրս կգա Արեգակնային համակարգից[75]։ Օրինակ, ՄաքՆոտի գիսաստղը ունի 1.000019 հելիոկենտրոն օսկուլացնող էքսցենտրիսիտետ իր պերիկենտրոնի մոտ 2007 թվականի հունվարի անցման ժամանակ, սակայն այն պտտվում է Արեգակի շուրջ մոտավորապես 92600-տարի պարբերությամբ, քանի որ նրա էքսցենտրիսիտետը սկսում է ընկնել 1-ից ներքև, երբ այն սկսում է հեռանալ Արեգակից։ Այսպիսի գիսաստղերի ապագա ուղեծիրը հնարավոր է դառնում հաշվարկել, երբ հաշվարկվում է նրա օսկուլացնող ուղեծիրը նրա մոլորակների շրջանը թողնելուն հաջորդող էպոխայում և հաշվարկվում է հաշվի առնելով Արեգակնային համակարգի ծանրության կենտրոնը։ Համաձայն սահմանման երկար պարբերությամբ գիսաստղերը մնում են Արեգակնային համակարգում և պտտվում են Արեգակի շուրջ, այն գիսաստղերը, որոնք դուրս են մղվում Արեգակնային համակարգից, մոլորակների մոտով անցումների պատճառով այլևս չեն կարող համարվել «պարբերություն» ունեցող գիսաստղեր։ Երկար պարբերությամբ գիսաստղերի ուղեծրերի ապոկենտրոնը ընկնում է մոլորակների ուղեծրերից շատ ավելի հեռու, և նրանց պտույտի հարթությունը ոչ միշտ է ընկնում խավարածրի հարթությանը մոտ։ Երկար պարբերությամբ գիսաստղերը, այնպիսիք, ինչպիսին են Վեստի գիսաստղը և C/1999 F1, կարող են ունենալ մոտ 70,000 ա.մ. հեռավորության վրա գտնվող ապոկենտրոններ և նրանց ուղեծրային պարբերությունները գնահատվում են մոտ 6 միլիոն տարի։

Միանգամյա հայտնության կամ ոչ-պարբերական գիսաստղերը նման են երկար պարբերությամբ գիսաստղերին, քանի որ նրանք նույնպես ունեն պարաբոլիկ կամ համարյա հիպերբոլիկ հետագծեր[74], երբ նրանք գտնվում են իրենց պերիկենտրոնի մոտ ներքին Արեգակնային համակարգում։ Այնուամենայնիվ, հսկա մոլորակների ձգողությաք դաշտերի ազդեցության տակ նրանց ուղեծրերը փոփոխվում են։ Միանգամյա հայտնության կամ այն գիսաստղերը որոնք ունեն հիպերբոլիկ կամ պարաբոլիկ օսկուլացնող ուղեծրեր, մեկ անգամ անցնելով Արեգակի մոտով ընդմիշտ հեռանում են Արեգակնային համակարգից[76]։ Արեգակի Հիլլի գունդը ունի ոչ կայուն առավելագույն սահամ 230000 ա. մ. հեռավորության վրա[77]։ Դիտարկվել են ընդամենը մի քանի հարյուր գիսաստղեր, որոնք հասել են հիպերբոլիկ ուղեծրի (e > 1), իրենց պերիկենտրոնին մոտ[78], ինչ նշանակում է, որ նրանք հետագայում դուրս կարող են գալ Արեգակնային համակարգի սահմաններից։

Մինչ այժմ չեն դիտարկվել այնպիսի գիսաստղեր, որոնց էքսցենտրիսիտետը նշանակալիորեն գերազանցում էր 1-ը[78], այստեղից կարելի է հետևություն անել, որ չկան հաստատված տեղեկություններ, որ Արեգակնային համակարգ է այցելել գիսաստղ արտաքին տիեզերքից։ C/1980 E1 գիսաստղը ուներ մոտավորապես 7,1 միլիոն տարի ուղեծրային պարբերություն մինչ 1982 թվականի իր անցումը պերիկենտրոնով, սակայն 1980 թվականի նրա անցումը Յուպիտերի մոտով արագացրել է գիսաստղը, տալով նրան ամենամեծ էքսցենտրիսիտետը (1,057), մինչ այժմ հայտնի հիպերբոլիկ գիսաստղերի միջև[79]։ Հետևյալ գիսաստղերը ենթադրվում է, որ այլևս չեն վերադառնա Արեգակնային համակարգ՝ C/1980 E1, C/2000 U5, C/2001 Q4 (ՆԻԹ), C/2009 R1, C/1956 R1, կամ C/2007 F1 (ԼՕՆԵՕՍ)։

Որոշ աղբյուրներում «պարբերական գիսաստղ» եզրը օգտագործում է բնութագրելու համար ցանկացած գիսաստղ, որն ունի պարբերական ուղեծիր (դրանք են, բոլոր կարճ, ինչպես նաև երկար պարբերությամբ գիսաստղերը)[80], մինչդեռ, այլ աղբյուրներում այսպես անվանում են միայն կարճ պարբերությամբ գիսաստղերը[74]։ Դրա նման, չնայած բառացիորեն «ոչ-պարբերական գիսաստղը» նույն իմաստն ունի, ինչպես և «միանգամյա հայտնության գիսաստղերը», որոշ աղբյուրներ այս եզրը օգտագործում են նշելու համար բոլոր ոչ «պարբերական» գիսաստղերը (այսինքն, ներառելով նաև բոլոր գիսաստղերը, որոնք ունեն ավելին քան 200 տարի պարբերություն)։

Վաղ դիտարկումները ի հայտ են բերել մի քանի իրական հիպերբոլիկ (ոչ-պարբերական) հետագծեր, սակայն այս հետագծերը, միևնույն է, հնարավոր էր բացատրել որպես Յուպիտերի փոխազդեցության արդյունք։ Եթե գիսաստղերը դուրս շպրտվեն միջաստղային միջավայր, ապա նրանց արագությունները կլինեն նույն կարգի, ինչպես և իրենց աստղերի մոտ (մի քանի տասնյակ կիլոմետր վայրկյանում)։ Եթե այսպիսի մարմին ներխուժի Արեգակնային համակարգ, ապա այն կունենա դրական ուղեծրային էներգիա և կունենա չափազանց հիպերբոլիկ ուղեծիր։ Մոտավոր հաշվարկները ցույց են տալիս, որ Յուպիտերի ուղեծրից ներս գտնվում են տարեկան մոտ չորս հիպերբոլիկ ուղեծրով գիսաստղեր[81]։

Օորտի ամպ և Հիլլի գունդխմբագրել

Օորտի ամպը գիսաստղերից բաղկացած հսկայական ամպ է, որը ենթադրվում է, որ շրջապատում է Արեգակնային համակարգը

Ենթադրվում է, որ Օորտի ամպը տարածվում է Արեգակից 2000-5000[82] աստղագիտական միավորից մինչև 50000 ա.մ. տարածք[64]։ Համաձայն որոշ գնահատականների, ամպի արտաքին սահմանը ավելի հեռու է՝ 100000-200000 ա. մ.[82]։ Այս տարածքը կարող է բաժանված լինել գնդաձև արտաքին Օորտի ամպի 20000-50000 ա.մ. տիրույթում, և փքաբլիթի տեսք ունեցող ներքին Օորտի ամպի 2000-20000 ա. մ. տիրույթում։ Արտաքին մասը միայն թույլ է կապված Արեգակին և մատակարարում է երկար պարբերությամբ (հավանաբար Հալլեյի տեսակի) գիսաստղեր Նեպտունի ուղեծրից ներս[64]։ Ներքին Օորտի ամպը, նույնպես անվանում են Հիլլի ամպ, անվանվել է Ջ. Գ. Հիլլզի անունով, ով ենթադրել է այս ամպի գոյությունը 1981 թվականին[83]։ Համաձայն մոդելների ներքին ամպը պետք է պարունակի հազարավոր անգամ ավելի շատ գիսաստղային միջուկներ, քան արտաքին ամպը[83][84][85], այն դիտարկվում է որպես արտաքին ամպի սնուցման աղբյուր, քանի որ այնտեղ գտնվող գիսաստղային միջուկները ժամանակի ընթացքում արտանետվում են։ Հիլլի ամպը կարող է բացատրել Օորտի ամպի միլիարդավոր տարիների ընթացքում գոյության խնդիրը[86]։

Էկզոգիսաստղերխմբագրել

Էկզոգիսաստղեր նույնպես դիտարկվել են Արեգակնային համակարգից դուրս, և կարող են լինել սովորական երևույթ Ծիր Կաթին գալակտիկայում[87]։ Առաջին էկզոգիսաստղը հայտնաբերվել է Կենդանագիրի Բետա աստղի մոտ 1987 թվականին[88][89]։ Ընդհանուր առմամբ մինչև 2013 թվականը դիտարկվել են 10 այսպիսի էկզոգիսաստղեր, այս հայտնաբերումները հնարավոր են դարձել կլանման սպեկտրի հետազոտությունների արդյունքում, գրանցելով գիսաստղի աստղին մոտ դիրքում արտանետած հսկայական քանակի գազերը[87][88]։

Գիսաստղերի ազդեցությունխմբագրել

Կապը ասուպային հոսքերի հետխմբագրել

Պերսերիդների ասուպների հոսքի դիագրամ

Իրենց արտանետումների հետևանքով, գիսաստղերը իրենց անցումից հետո թողնում են պինդ մասնիկներ, որոնք չափազանց մեծ են, որպեսզի քշվեն ճառագայթման ճնշման և արեգակնային քամու միջոցով[90]։ Եթե գիսաստղի անցած ուղեծիրը ընկնում է Երկրի ուղեծրի մոտակայքում, ապա այդ վայրում հավանական է, որ Երկրի վրա կտեղա ասուպային անձրև, բաղկացած գիսաստղի բեկորներից։ Օրինակ, Պերսեիդներ ասուպների հոսքը, որի միջով Երկիրը անցնում է ամեն տարվա օգոստոսի 9-ից 13-ը հանդիսանում է, Սվիֆթ – Թուտլի գիսաստղի հետքը[91]։ Հալլեյի գիսաստղին է պատկանում Օրիոնիդներ ասուպների հոսքը, որի հետևանքով ասուպային անձրև է տեղում հոկտեմբերին[91]։

Գիսաստղերը և նրանց ազդեցությունը կյանքի վրախմբագրել

Երկրի պատմության վաղ շրջաններում բազմաթիվ գիսաստղեր և աստերոիդներ ընկել են մոլորակի վրա։ Գիտնականներից շատերը կարծում են, որ այն գիսաստղերը, որոնք ռմբակոծում էին Երկիրը մոտ 4 միլիարդ տարի առաջ, իրենց հետ նաև բերել են հսկայական քանակով ջուր, որը և կազմում է երկրի օվկիանոսների շերտը, կամ դրա զգալի մասը։ Որոշ գիտնականներ կասկածի տակ են դնում այս վարկածը[92]։ Գիսաստղերի մեջ զգալի քանակով օրգանական մոլեկուլների հայտնաբերումից հետո առաջ քաշվեց վարկած այն մասին, որ հենց գիսաստղերը կամ աստղաքարերն են բերել Երկիր կյանքը[93]։ 2013 թվականին հրատարակված մի աշխատության մեջ ենթադրվում է, որ քարե և սառցե մակերևույթների բախման արդյունքում, այնպիսիք ինչպիսին են գիսաստղերի բախումները, կա հավանականություն, որ ստեղծվեն ամինաթթուներ, որոնք կարող են առաջացնել պրոտեիններ շոկային սինթեզի միջոցով[94]։

Կասկածներ կան, որ երկար ժամանակի ընթացքում Լուսնի վրա ընկած գիսաստղերը նաև Երկրի արբանյակի վրա են հասցրել զգալի քանակով ջուր, որի մի մասը ձևավորել է լուսնային սառույցը[95]։ Գիսատղերի և աստղաքարերի անկումներին են վերագրում նաև տեկտիտների և ավստրալիտների գոյությունը[96]։

Գիսաստղերի ճակատագիրխմբագրել

Արտանետվելը կամ հեռանալը Արեգակնային համակարգիցխմբագրել

Եթե գիսաստղի շարժման արագությունը բավականաչափ մեծ է, այն կարող է լքել Արեգակնային համակարգը, սա հիմնականում վերաբերվում է հիպերբոլիկ գիսաստղերին։ Մինչև այսօր հայտնի են միայն փոխազդեցության պատճառով Արեգակնային համակարգից արտանետված գիսաստղեր, օրինակ Յուպիտերի հետ[97]։ Այսպիսի երևույթի օրինակկարող է հանդիսանալ C/1980 E1 գիսաստղի դեպքը, որը 1980 թվականին Յուպիտերի մոտով անցման ժամանակ իր Արեգակի շուրջ 7,1 միլիոն տարի պարբերությամբ ուղեծրից տեղափոխվեց հիպերբոլիկ հետագծի, մոլորակի ձգողության ազդեցության պատճառով[98]։

Ցնդող նյութերի սպառումխմբագրել

Իվերջո գիսաստղի միջուկի ցնդող նյութերի մեծ մասը արտանետվում է, և գիսաստղը դառնում է փոքր, մուգ իներտ ժայռակտոր, որը արդյունքում դառնում է աստերոիդ[99]։ Էլիպտիկ ուղեծրերում գտնվող աստերոիդներից որոշները այժմ գնահատվում են որպես ծերացած գիսաստղեր[100]։ Երկրամերձ աստերոիդների մոտավորապես վեց տոկոսը համարվում են ծերացած գիսաստղերի միջուկներ, որոնք գազեր չեն արտանետում[37]։

Յուպիտերի ընտանիքի գիսաստղերը և երկար պարբերությամբ գիսաստղերը ունեն տարբեր ծերացման ժամանակահատվածներ։ Յուպիտերի ընտանիքի գիսաստղերը ակտիվ են մնում մոտ 10000 տարիների ընթացքում ինչը համապատասխանում է մոտավորապես 1000 ուղեծրային պտույտների, իսկ երկար պարբերությամբ գիսաստղերը ծերանում են շատ ավելի արագ։ Երկար պարբերությամբ գիսաստղերի միայն 10% է ակտիվ մնում իրենց փոքր պերիկենտրոնի 50 անցումներից հետո և ընդամենը 1% ավելին քան 2000 անցումները[37]։

Տրոհումը և բախումներխմբագրել

Որոշ գիսաստղերի միջուկը փխրուն է, այս հետևությունը արվել է մասերի բաժանվող գիսաստղերի դիտարկումների ընթացքում[101]։ Գիսաստղերը տրոհվում են մասերի ներքին գազի ճնշումից, ջերմային սթրեսից կամ բախումների հետևանքով[102]։

Ամենանշանակալի գիսաստղի տրոհումը մասերի տեղի է ունեցել Շումեկեր-Լևիի 9 գիսաստղի հետ, որը հայտնաբերվել էր 1993 թվականին։ 1992 թվականին այն գրավիտացիոն ուժերի ազդեցության տակ բաժանվել էր մասերի, և 1994 թվականին վեց օրերի ընթացքում նրա մասերը մտան Յուպիտերի մթնոլորտ, սա առաջին դեպքն էր, որ աստղագետները դիտարկում էին Արեգակնային համակարգի երկու մարմինների բախումը[103][104]։ Տրոհվող գիսաստղերի այլ օրինակներ կարող են դիտարկվել 3Դ/Բիելան հայտնաբերված 1846 թվականին և 73P/Շվասման-Վախմանը 1995–2006 թվականները[105]։ Մասերի բաժանված գիսաստղի ամենահին հիշատակումներից է հույն պատմաբան Էֆորուսի գրառումը այն մասին, որ գիսաստղը երկնքում բաժանվել է մասերի 372–373 Մ. թ. ա. ձմռանը[106]։

42P/Նեույմին և 53P/Վան Բիսբրոկ գիսաստղերը հանդիսանում են մեկ մայր գիսաստղի բեկորներ։ Հաշվարկները ցույց են տվել, որ այս երկու գիսաստղերը 1850 թվականի հունվարին անցել են Յուպիտերի մոտով, և որ այս երկու մարմինների ուղեծրերը մինչ այդ պահը համարյա նույնն են եղել[107]։

Որոշ գիսաստղերի դիտարկումը ցույց է տվել, որ նրանք տրոհվել են մասերի իրենց պերիհելիով անցման ընթացքում, դրանցից են Վեստ և Իկեյա-Սեկի գիսաստղերը։ Բիելայի գիսաստղը այն նշանակալի դեպքերից էր, երբ 1846 թվականին այն տրոհվեց երկու մասերի պերիհելիոնով անցման ժամանակ։ Այս երկու առանձին գիսաստղերը դիտարկվել են իրարից առանձին 1852 թվականին, և դրանից հետո այլևս երբեք։ Դրքա փոխարեն 1872 և 1885 թվականներին, երբ այս գիսաստղը պետք է հայտնվեր, դիտարկվել են ասուպների անձրև։ Ամեն տարի նոյեմբեր ամսին, երբ Երկիրը հատում է Բիելայի գիսաստղի ուղեծիրը հայտնվում է Անդրոմեդիդներ ասուպների անձրևը[108]։

Որոշ գիսաստղեր ունենում են ավելի դիտարժան վախճան. կամ ընկնում են Արեգակի վրա[109], կամ բախվում են մոլորակներին կամ այլ մարմիններին։ Գիսաստղերի և մոլորակների կամ նրանց արբանյակների բախումները հաճախակի էին Արեգակնային համակարգի կազմության վաղ ժամանակներում. Լուսնի վրա գոյություն ունեցող խառնարանների որոշ մասը կարող էին առաջանալ գիսաստղերի հետ բախումներից։ Գիսաստղի վերջին դիտարկված բախումը մոլորակի հետ տեղի է ունեցել 1994 թվականի հուլիսին, երբ Շումեյկեր – Լևիի 9 գիսաստղը տրոհվելով մասերի բախվեց Յուպիտերի հետ[110]։

Հետազոտությունների պատմությունխմբագրել

Վաղ դիտարկումներ և կարծիքներխմբագրել

Հալլեյի գիսաստղի հայտնությունը Հաստինգսի ճակատամարտի ժամանակ 1066 թվականին (Բայոյի գոբելեն).
1680 թվականի գիսաստղի ուղեծիրը, ներկայացված Իսահակ Նյուտոնի Սկզբունքներում

Գոյություն ունեն մարդկության կողմից հնադարյան ժամանակներում գիսաստղերի դիտարկումների ապացույցներ, օրինակ չինական գուշակության ոսկորները[112]։ Մինչև 16-րդ դարը գիսաստղերը սովորաբար ընդունվում էին որպես վատ նշաններ, թագավորների կամ ազնվականների մահվան, կամ գալիք աղետների նախանշաններ, կամ նույնիսկ երկնային էակների հարձակումները երկրի բնակիչների վրա[113][114]։

Արիստոտելը հավատում էր, որ գիսաստղերը մթնոլորտային երևույթներ են, քանի որ դրանք հայտնվում էին Կենդանակերպից դուրս և տարբերվում էին գույնով ու պայծառությամբ ժամանակի ընթացքում[115]։ Պլինիոս Ավագը հավատում էր, որ գիսաստղերը կապված են քաղաքական խժդժությունների և մահվան հետ[116]։

16-րդ դարում Տիխո Բրահեն ընդունելով որպես հիմք տարբեր տեղերում գտնվող աստղագետների դիտարկումները հաշվարկեց 1577 թվականի մեծ գիսաստղի պարալաքսը և ապացուցեց, որ գիսաստղերը գտնվում են Երկրի մթնոլորտից դուրս։ Հաշվարկումների հիման վրա ենթադրվեց, որ գիսաստղը գտնվում էր Երկրից ամենապակասը չորս անգամ ավելի հեռու քան Երկրից Լուսին ընկած հեռավորությունն էր[117][118]։

Ուղեծրային հետազոտություններխմբագրել

Իսահակ Նյուտոնը իր Բնական փիլիսոփայության մաթեմատիկական սկզբունքները աշխատությունում, 1687 թվականին, ցույց տվեց, որ մարմինը, որը շարժվում է ձգողության հետադարձ քառակուսիների օրենքի ազդեցության տակ, շարժման ընթացքում պետք է ձևավորի կոնի հատույթի նմանվող ուղեծիր, և ցույց տվեց թէ ինչպես է գիսաստղի շարժումը համընկնում պարաբոլիկ ուղեծրի հետ 1680 թվականի գիսաստղի օրինակի վրա[119]։

1705 թվականին Էդմունդ Հալլեյը (1656–1742) կիրառելով Նյուտոնի մեթոդը 1337-ից 1698 թվականները տեղի ունեցած գիսաստղերի հայտնության քսաներեք դեպքերի վրա, նկատեց, որ դրանցից երեքը 1531, 1607 և 1682 թվականներին ունեն շատ նման ուղեծրի էլեմենտներ, և եզրակացրեց որ դրանց փոքր տարբերությունները առաջացել են Յուպիտերի և Սատուրնի մոտով անցումների ժամանակ ձգողական խոտորումների հետևանքով։ Համոզվելով, որ այս երեք գիսաստղերի հայտնությունները միևնույն գիսատղն էին, նա կանխագուշակեց, որ այս գիսաստղը կհայտնվի կրկին 1758–9 թվականներին[120]։ Հալլեյի կանխագուշակումը հետագայում ճշգրտվեց ֆրանսիացի մաթեմատիկոսների թիմի կողմից (Ալեկսի Կլերո, Ժոզեֆ Լալանդ, և Նիկոլ-Ռեյն Լեպոտ), համաձայն նրանց կանխատեսման գիսաստղի պերիհելիով անցումը տեղի պետք է ունենար 1759 թվականին մեկ ամիս ճշտությամբ[121]։ Երբ գիսաստղը հայտնվեց ինչպես և կանխատեսված էր, այն անվանվեց Հալլեյի գիսաստղ։ Այս գիսաստղի հաջորդ հայտնությունը տեղի կունենա 2061 թվականին[122]։

Ֆիզիկական առանձնահատկությունների հետազոտություններխմբագրել

Իսահակ Նյուտոնը սահմանում էր գիսաստղերը որպես սեղմ պինդ մարմիններ, որոնք շարժվում են կոր ուղեծրերով և նրանց պոչերը որպես նրանց միջուկից արտանետված կամ Արեգակի ազդեցությամբ գոլորշիացած գազերի շերտեր։ Նյուտոնը ենթադրեց, որ գիսաստղերն են հանդիսացել օդի կյաքագոյացնող մասնիկների աղբյուրը[123]։

Արդեն 18-րդ դարում գիտնականները առաջադրեցին ճիշտ վարկած գիսաստղերի ֆիզիկական կազմության վերաբերյալ։ 1755 թվականին Իմանուիլ Կանտը ենթադրեց, որ գիսաստղերը կազմված են ցնդող նյութերից, որոնց ցնդումը առաջացնում է այդ հիանալի տեսարանները նրանց պերիհելիին մոտ[124]։ 1836 թվականին գերմանացի մաթեմատիկոս Ֆրիդրիխ Բեսելը դիտարկելով Հալլեյի գիսաստղի 1835 թվականի հայտնությունը, ենթադրեց, որ ցնդող նյութերի արտանետման ուժը կարող է լինել այնքան մեծ, որպեսզի ազդեցություն ունենա գիսաստղի ուղեծրի վրա, և առաջարկեց այս բացատրությունը Էնկեյի գիսաստղի շարժման ոչ-ձգողական փոփոխության համար[125]։

1950 թվականին Ֆրեդ Ուիպլը ենթադրեց, որ գիսաստղերը դրանք ոչ թէ քարե մարմիններ են սառույցի հավելումներով, այլ սառցե մարմիններ են փոշու և քարի հավելումներով[126]։ Այս «կեղտստ ձնագնդի» մոդելը արագորեն ընդունվեց, և հաստատվում է բազմաթիվ տիեզերական սարքերի հետազոտություններով (ներառյալ Եվրոպական Տիեզերական Գործակալության «Ջիոտո»-ն և խորհրդային Վեգա 1 և Վեգա 2), որոնք անցել են Հալլեյի գիսաստղի պոչի միջով 1986 թվականին, լուսանկարել են նրա միջուկը և հետազոտել են ցնդած նյութերի շիթերը[127]։

2014 թվականի հունվարի 22-ին ԵՏԳ գիտնականները հայտնեցին, ջրային գոլորշու հայտնաբերման մասին գաճաճ մոլորակ Սերեսի վրա, որը ամենամեծ մարմինն է աստերոիդների գոտում[10]։ Այս հայտնագործությունը կատարվել էր Հերշել տիեզերական աստղադիտակի հեռու-ինֆրակարմիր տվիչով[128]։ Այս հայտնագործությունը անսպասելի էր, քանի որ գիսաստղերը, այլ ոչ աստերոիդներն են սովորաբար համարվում «շիթեր արձակողներ»։ Գիտնականներից մեկի խոսքերով. «Աստերոիդների և գիսաստղերի միջև սահմանները դառնում են ավելի ու ավելի մշուշոտ»[128]։ 2014 թվականի օգոստոսի 11-ին, աստղագետները Ատակամայի մեծ աստղադիտակի առաջին կիրառումից հետո հրատարակեցին աշխատություն, որում բերվում էին ապացույցներ C/2012 F6 (Լեմոն) և ԻՍՕՆ գիսաստղերի վարսում և պոչում HCN, HNC, H2CO միացությունների և փոշու հայտնաբերման մասին[129][130]։

Տիեզերական սարքերով հետազոտություններխմբագրել

ԳիսաստղՏիեզերական սարք
ԱնունՊատկեր Չափեր
(կմ)
(a)
Հայտնաբերման
տարի
ԱնունԱմենամոտ անցումՆշումներ
տարիկմշառավիղ
Ջիակոբինի-Զիներ
21900ՄԳՀ19857,8007,800գիսաստղի մոտով առաջին անցում
Հալլեյ
15×9հայտնի
հին
դարերից
Վեգա 119868,8891,620անցում
Վեգա 219868,0301,460անցում
Սույսեյ1986151,00027,450հեռավոր անցում
Սակիգակե19866,990,0001,270,747հեռավոր անցում
Ջիոտտո1986596108անցում, գիսաստղի միջուկի առաջին անմիջական լուսանկարներ
Գրիգ-Սկյելերուպ
2.61902Ջիոտտո1992200154անցում
Բորելի
8×4×41904Դիփ Սփեյս 120012,171814անցում; ամենամոտ դիքը 2001 թվականի սեպտեմբեր, երբ սարքը մտել է վարսի մեջ[131]
Վայլդ 2
5.5×4.0×3.31978Սթարդասթ2004240113անցում; առաջին գիսաստղի նյութի վերադարձ Երկրի (2006)
Թեմփլ 1
7.6×4.91867Դիփ իմփաքթ200550080անցում; տեղափոխել է բախվող սարքը
Դիփ իմփաքթ ԱՄԿ-ի բախվող սարք200500առաջին վայրէջք գիսաստղի վրա (առաջացրել է խառնարան)
Սթարդասթ201118157.9անցում; լուսանկարել է Դիփ իմփաքթ ԱՄԿ-ի բախվող սարքի խառնարանը
C/2006 P1?2006Ուլիս2007260 միլիոն?անսպասելի անցում գիսաստղի պոչի միջով, գրանցել է բարդ քիմիական կազմություն, արեգակնային քամու արագությունը կեսով կրճատվել էր
Հալլեյ 2
1.41986ԷՊՈՔՍԻ
(Դիփ իմփաքթ)
20107001,000անցում; ամենափոքր գիսաստղը որին այցելել է ԱՄԿ
Չուրյումով-Գերասիմենկո
4.1×3.3×1.81969Ռոզետա201463.91
5.37
գիսաստղի առաջին ուղեծրակայան (2014 նոյեմբեր); ուղեծրում մնացել է մինչև 2015; ՕՍԻՐԻՍ սարքը լուսանկարել է այն 11 սմ/px-թույլտվությամբ 2015 թվականի գարնանը[132]
Ֆիլաե
(Ռոզետայի իջեցվող սարք)
201400առաջին փափուկ վայրէջք գիսաստղի վրա (2014 նոյեմբեր)
Նշումներ։
(a) Քանի որ գիսաստղերը հիմնականում գնդաձև չեն, նրանց չափերը նկարագրվում են x, y, և z առանցքներով չափերով կամ միջին շառավղով

Հետաքրքիր փաստեր կապված տիեզերական սարքերով հետազոտությունների հետխմբագրել

  • 2014 թվականի հոկտեմբերին Մարս մոլորակի մոտով անցավ C/2013 A1 գիսաստղը, ավելի մոտ տարածության վրա, քան Երկիր-Լուսին հեռավորությունն է[133]։ Ավելի վաղ 2014 թվականին համաձայն հաշվարկների այն պետք է անցներ 0,00087 ա. մ.[133]։ Այս անցումը այնքան մոտ էր, որ համարվեց վտանգ Մարսի ուղեծրում գտնվող ուղեծրային կայանների համար[134]։ Այդ պահի դրությամբ Մարսի ուղեծրում գտնվում էին հետևյալ ակտիվ ավտոմատ միջմոլորակային կայանները՝ 2001 Մարս Օդիսեյ, Մարս էքսպրես, ՄԱՎԵՆ, Մագալյան և Մարս Ռեքոնաիսանս Օրբիթեր, ինչպես նաև մոլորակի մակերևույթին գործում էին Մարս Էքսփլորեյշն Ռովեռը, Օփորթյունիթի և Քուրիոզիթի մարսագնացները։
  • 2001 թվականին Դիփ Սփեյս 1 միջմոլորակային կայանը բարձր թույլտվությամբ լուսանկարեց 19P/Բորելի գիսաստղի մակերևույթը։ Պարզվեց, որ գիսաստղի մակերևույթը տաք է և չոր, մոտ 26-ից 71 °C ջերմաստիճանով, և չափազանց մուգ։ Հետևաբար սառույցը մակերևույթից հեռացվել է Արեգակի ճառագայթման հետևանքով, կամ այն ծածկված է մրանման միներալի շերտի տակ[135]։ 2005 թվականի հուլիսին Դիփ իմփաքթ ԱՄԿ-ն հարվածեց Թեմփել 1 գիսաստղին առաջացնելով խառնարան, նրա միջուկի հետազոտության նպատակով։ Այս առաքելության արդյունքները ցույց տվեցին, որ գիսաստղի վրա ջրային սառույցի հիմնական զանգվածը գտնվում է մակերևույթի տակ, և այս պահարանները սնում են գոլորշիացած ջրի շիթերը, որոնք էլ ձևավորում են Թեմփել 1 գիսասղտի վարսը[136]։ ԷՊՈՔՍԻ վերանվանվելով սարքը 2010 թվականի նոյեմբերի 4-ին անցավ նաև Հարթլի 2 գիսաստղի մոտով։
  • Սթարդասթ առաքելության ընթացքում Վայլդ 2 գիսաստղի պոչի միջով անցման ժամանակ գրանցվել են բյուրեղներ, որոնք կարող էին առաջանալ 1000 °C-ից ավելին ջերմության պայմաններում[137][138]։ Չնայած գիսաստղերը ստեղծվել են արտաքին Արեգակնային համակարգում, նախա-մոլորակային սկավառակի պտույտի ընթացքում նյութը վերաբաշխվել է Արեգակնային համակարգով[139], և որպես հետևանք գիսաստղերը նույնպես պարունակում են բյուրեղների մասնիկներ որոնք առաջացել էին Արեգակնային համակարգի ներքին մասերում։ Վերջին հետազոտությունները ցույց են տալիս, որ «գիսաստղերի փոշին կազմված է աստերոիդային նյութերից»[140]։ Այս հետազոտությունների արդյունքները ստիպեցին գիտնականներին վերաիմաստավորել գիսաստղերի բնությունը և նրանց տարբերությունները աստերոիդներից[141]։
  • Ռոզետա միջմոլորակային կայանը այս պահին պտտվում է Չուրյումով-Գերասիմենկո գիսաստղի շուրջ անկանոն ուղեծրով։ 2014 թվականի նոյեմբերի 14-ին նրա Ֆիլաե իջեցվող սարքը հաջողությամբ վայրէջք է կատարել գիսաստղի մակերևույթին, որը պատմության մեջ այսպիսի մարմնի վրա առաջին վայրէջքն էր[142]։

Մեծ գիսաստղերխմբագրել

1577 թվականի Մեծ գիսաստղ, փոքրագորություն փայտի վրա

Մոտավորապես տասնամյակը մեկ անգամ գիսաստղերից որևէ մեկը երկնքում դառնում է այնքան պայծառ, որ հնարավոր է լինում այն դիտարկել անզեն աչքով։ Այսպիսի գիսաստղերը նշանակվում են որպես Մեծ գիսաստղեր[106]։ Կանխագուշակել, կդառնա արդյոք գիսաստղը մեծ, թէ ոչ, բավականին բարդ է, քանի որ գիսաստղերի պայծառության վրա ազդում են բազմաթիվ գործոններ, և երբեմն իրականությունը զգալիորեն տարբերվում է կանխատեսումներից[143]։ Ընդհանուր առմամբ, եթե գիսաստղը ունի մեծ և ակտիվ միջուկ, անցնելու է Արեգակին բավականաչափ մոտ տարածության վրա և չի ծածկվի Արեգակի սկավառակով Երկրից դիտարկողների համար, ապա հավանական է, որ այն կդառնա Մեծ գիսաստղ։ Այնուամենայնիվ, Կոհուտեկի գիսաստղը 1973 թվականին բավարարում էր բոլոր այս պայմաններին, և կանխատեսվում էր, որ կունենա տպավորիչ տեսք, այդպես էլ չդարձավ Մեծ գիսաստղ[144]։ Վեստի գիսաստղը, որը հայտնվեց երեք տարի անց, շատ ավելի պակաս սպասելիքներ էր թույլ տալիս ունենալ, սակայն դարձավ չափազանց տպավորիչ գիսաստղ[145]։

20-րդ դարի ավարտին տեղի ունեցավ մեծ ընդմիջում, որի ընթացքում մեծ գիսաստղեր չէին հայտնվում։ Դրանից անմիջապես հետո հայտնվեցին երկու մեծ գիսաստղեր Հյակուտակե գիսաստղը 1996 թվականին, և Հեյլ-Բոպպի գիսաստղը 1997-ին։ 21-րդ դարի առաջին մեծ գիսաստղն է C/2006 P1 (ՄաքՆոտ), որը դարձավ տեսանելի անզեն աչքով 2007 թվականի հունվարին։ Վերջին 40 տարվա ընթացքում այն ամենապայծառն էր[146]։

Մերձարեգակնային գիսաստղխմբագրել

Մերձարեգակնային գիսաստղ են անվանում այն գիսաստղերը, որոնք անցնում են իրենց պերիհելիով Արեգակին չափազանց մոտ, հիմնականում մինչև մի քանի միլիոն կիլոմետր[147]։ Այս դասի փոքր գիսաստղերը կարող են գոլորշիանալ առաջին իսկ պերիհելիոնով անցման ժամանակ, սակայն մեծ գիսաստղերը կարող են գոյատևել մի քանի անցումներ։ Այնուամենայնիվ առաջացող հզոր մակընթացային ուժեր հաճախ հանգեցնում են այս գիսաստղերի տրոհմանը մասերի[148]։

ՍՕՀՕ տիեզերական աստղադիտակից դիտարկված մերձարեգակնային գիսաստղերի մոտ 90% հանդիսանում են Կրեյցի խմբի գիսաստղեր, որոնք բոլորը հանդիսանում են մեկ հսկա գիսաստղի մասեր, որը տրոհվել էր մասերի ներքին Արեգակնային համակարգով անցման ժամանակ[149]։ Մանցած մասը կազմում են պատահական գիսաստղեր, սակայն դրանց մեջ առանձնացվում են չորս խմբեր. Կրախտի, Կրախտի 2ա, Մարսդենի և Մեյերի խմբերը։ Մարսդենի և Կրախտի խմբերը հավանաբար կապված են 96P/Մախհոլց գիսաստղի հետ, որը նաև հանդիսանում է երկու ասուպային հոսքերի աղբյուր, Քվանդրատիդների և Արիետիդների[150]։

Արտասովոր գիսաստղերխմբագրել

Էյլերի շրջանակները ցույց է տալիս Արեգակնային համակարգի մարմինների տեսակները

Հազարավոր հայտնի գիսաստղերից որոշները ունեն արտասովոր առանձնահատկություններ։ Էնկեի գիսաստղի (2P/Էնկե) ուղեծիրը սկսվում է աստերոիդների գոտուց դուրս և ավարտվում է Մերկուրի մոլորակի ուղեծրից մետ Արեգակին, իսկ 29P/Շվասման–Վախման գիսաստղը այս պահին պտտվում է համարյա շրջանաձև ուղեծրով Յուպիտերի և Սատուրնի ուղեծրերի ներսում[151]։ (2060) Քիրոնը, որի անկայուն ուղեծիրը ընկած է Սատուրնի ու Ուրանի ուղեծրերի միջև, սկզբում դասակարգվել էր որպես աստերոիդ, մինչ նրա մոտ հայտնաբերվեց թույլ պոչ[152]։ Դրա նման, Շումեյկեր–Լևի 2 գիսաստղը սկզբում նշանակվել էր որպես աստերոիդ 1990 UL3[153]։

Կենտավրոսներխմբագրել

Կենտավրոսները սովորաբար ունեն և աստերոիդների, և գիսաստղերի առանձնահատկություններ[154]։ Դրանք կարող են դասակարգվել և անվանվել ինչպես գիսաստղերի անվանակարգով, այնպես էլ աստերոիդների, օրինակ 166P/NEAT հայտնաբերվել է, երբ այն սկսել է արձակել պոչ, և դասակարգվել է որպես գիսաստղ չնայած իր ուղեծրին, իսկ (60558) Էչեքլուսը հայտնաբերվել է առանց պոչի, դասակարգվել և անվանվել է որպես աստերոիդ և հետո միայն դարձել է ակտիվ արձակելով պոչ[155], և հետևաբար ստացել է նաև գիսատղի անվանում (174P/Էչեքլուս)։ Կասինի-Հյուգենս ԱՄԿ-ի օգտագործման հնարավոր տարբերակներից մեկն էր ուղարկել այն դեպի կենտավրոսներից մեկը, սակայն ՆԱՍԱ-ն որոշեց այն ոչնչացնել[156]։

Դիտարկումներխմբագրել

Գիսաստղը կարող է հայտնաբերվել աստղադիտակներով կատարված լուսանկարների վրա, կամ հեռադիտակով դիտարկումներով։ Այնուամնեայնիվ, սիրող աստղագետները կարող են դիտարկել կամ հայտնաբերելու գիսաստղերը առանց օպտիկական սարքավորումներ օգտագործելու, տարբեր արբանյակներից կատարված, ազատ հասանելի լուսանկարներ ներբեռնելով և հետազոտելով, օրինակ՝ ՍՕՀՕ[34]։ ՍՕՀՕ-ի լուսանկարնրից 2000-րդ գիսաստղը հայտնաբերել է լեհ սիրող աստղագետ Միքաել Կուսյակը 2010 թվականին[157]։

Կորսվածխմբագրել

Պարբերական գիսաստղերի մի մասը, որոնք հայտնաբերվել էին տասնյակ կամ հարյուրավոր տարիներ առաջ, այժմ կորսված են։ Քանի որ, կամ նրանց ուղեծրերը հայտնի չեն եղել այնպիսի ճշտությամբ, որպեսզի հնարավոր լիներ կանխատեսել նրանց հաջորդ հայտնությունը, կամ այդ գիսաստղերը անհետացել են։ Այնուամենայնիվ, երբեմն հայտնաբերվում է «նոր» գիսաստղ, և հաշվարկները ցույց են տալիս, որ դա հնում «կորսված» գիսաստղն է։ Դրա օրինակ կարող է ծառայել 11P/Թեմպլ–Սվիֆթ–ԼԻՆԵԱՐ գիսաստղը, որը հայտնաբերվել էր 1869 թվականին, չէր դիտարկվում 1908 թվականից հետո Յուպիտերի կողմից առաջացրած խոտորումների պատճառով։ Այն կրկին գտնվեց Լինքոլնի անվան մերձերկրյա աստերոիդների որոնման լաբորատորիա ծրագրի կողմից 2001 թվականին[158]։

Պատկերասրահխմբագրել

Տեսահոլովակներ
ՆԱՍԱ-ն նախագծում է գիսաստղի հարպուն, գիսաստղի նյութի Երկիր վերադարձնելու համար
Էնկեյի գիսաստղը կորցնում է իր պոչը

Մշակույթումխմբագրել

Հանրամատչելի մշակույթում գիսաստղերի պատկերը հիմնականում հիմնված է արևմտյան ավանդույթային այն պատկերացման վրա, որ դրանք ավերիչ դեպքերի նախանշան են, կամ աշխարհափոխիչ փոփոխությունների գույժ են[160]։ Միայն Հալլեյի գիսաստղը ամեն իր հայտնության ժամանակ առաջացնում է բազմաթիվ սենսացիոն հրապարակումներ տարաբնույթ իմաստներով։ Հատկապես նշվել է, որ հանրաճանաչ մարդկանց ծնունդը և մահը կապված են եղել գիսաստղերի հայտնության հետ, օրինակ՝ Մարկ Տվենը (ով ճիշտ կանխագուշակել էր, որ «հեռանալու է գիսաստղի հետ» 1910 թվականին)[160] և Էուդորա Վելթին, ում կյանքի մասին Մարի Չապին Քարփենթերը գրել էՀալլեյը եկել է Ջեքսոն երգը[160]։

Հին ժամանակներում պայծառ գիսաստղերը հաճախ առաջացնում էին խուճապ և հիստերիա մարդկանց շրջանում։ Ավելի ուշ ժամանակներում Հալլեյի գիսաստղի 1910 թվականի հայտնության ժամանակ Երկրագունդը անցավ գիսաստղի պոչի միջով, և թերթերը սխալ լուր էին տարածում, այն մասին, որ գիսաստղի պոչում եղած Ցիան գազը կթունավորի միլիոնավոր մարդկանց[161], իսկ Հեյլ-Բոպպի գիսաստղի հայտնությունը 1997 թվականին հանգեցրեց Երկնաց դարպաս կրոնական խմբի անդամների զանգվածային ինքնասպանության[162]։

Գիտական ֆանտաստիկայում գիսաստղերի հարվածը Երկրին ներկայացվել է որպես վաղահաս վտանգ մոլորակի համար (Բախում անդունդին, 1998 և Արմագեդոն, 1998), կամ որպես գլոբալ աշխարիհի կործանման առաջացնող (Լյուցիֆերի մուրճը, 1979), կամ զոմբիների ալիքների պատճառ (Գիսաստղի գիշեր, 1984)[160]։ Ժյուլ Վեռնի Հեկտոր Սերվադակ վեպում մի խումբ մարդիկ հայտնվում են Արեգակի շուրջ պտտվող գիսաստղի վրա, իսկ Արթուր Կլարկի 2061: Երրորդ ոդիսական գրքում մեծ արշավախումբ այցելում է Հալլեյի գիսաստղ[163]։

Տես նաևխմբագրել

Ծանոթագրություններխմբագրել

Արտաքին հղումներխմբագրել

Այս հոդվածի կամ նրա բաժնի որոշակի հատվածի սկզբնական կամ ներկայիս տարբերակը վերցված է Քրիեյթիվ Քոմմոնս Նշում–Համանման տարածում 3.0 (Creative Commons BY-SA 3.0) ազատ թույլատրագրով թողարկված Հայկական սովետական հանրագիտարանից  (հ․ 3, էջ 75
🔥 Top keywords: Գլխավոր էջՎբեթՀուլիոս ԿեսարՏոտոԳեյմինգԱՄՆԶլատան ԻբրահիմովիչԶատիկՍպասարկող:ՈրոնելՆյութափոխանակությունՍահմիՀայաստանՀուդայածառՀովհաննես ԹումանյանԱրարատ ԶուրաբյանԼիոնել ՄեսսիՆապոլեոն ԲոնապարտՕքեյԵգիպտոսՌուսաստանՍպասարկող:ՎերջինփոփոխություններըԿոմիտասՀակաբիոտիկԵղիշե ՉարենցՅուպիտեր (մոլորակ)ՀայերԱվագ շաբաթՊարույր ՍևակԵրևանՀայերենի այբուբենԹատրոնի համաշխարհային օրՍեռական հարաբերությունԳենՋրծաղիկԱմերիկյան ընտանիքՀեպատիտ CՏիգրան ՄեծԱրարատԱնգկոր ՎատՀայոց ցեղասպանությունԿառլես ՊուչդեմոնԽաչատուր ԱբովյանՍասունցի ԴավիթՋիլիզաՄարեկ ՀամշիկՔութեշԾաղկազարդՄոդուլ:ArgumentsՎիքինախագիծ:Ուսուցչական վիքիհավաք 2024Վահան ՏերյանԱվետիք ԻսահակյանՀայաստանի Հանրապետության վարչատարածքային բաժանումՀեշտոցի սնկային վարակՖաշիզմՍասնա ծռերԲռնիր ինձ, եթե կարող եսԳարեգին ՆժդեհՀամո ՍահյանԿարմրուկՄադրիդԶատկի ավանդույթներՋուրԱդրբեջանԼյարդՀայկյան տոմարՄիացյալ ԹագավորությունՔաոս (վեպ)ՄատենադարանՈսկեպարՉինաստանՎրաստանԿատեգորիա:ՀՀ Կարմիր գրքում գրանցված կենդանիներՄեսրոպ ՄաշտոցՀայաստանի կենդանիների Կարմիր գիրքԲրազիլիաԲավարիաԲայՏավուշի մարզԱմերիկայի Միացյալ ՆահանգներՕրալ սեքսThe Truth About LoveՁեռնաշարժությունՄիզուղիների ինֆեկցիաներԵվրոպայի դրոշներՀայաստանի Կարմիր գիրքՇաքարային դիաբետԱստվածաշունչԱծական անունՍամվել (վեպ)Հեշտոցային արտադրությունԶատկի ձուԱրշակ ԿարապետյանՄարտիրոս ՍարյանՐաֆֆիԿատեգորիա:Երկրներ այբբենական կարգովՄանթաշի ջրամբարՇառլ ԱզնավուրԱրցախի ՀանրապետությունՖրանսիաՄարտի 27