Californium

élément chimique ayant le numéro atomique 98

Californium
Image illustrative de l’article Californium
Disque de 10 mg de californium 249.
BerkéliumCaliforniumEinsteinium
Dy
 Structure cristalline hexagonale compacte
 
98
Cf
 
        
        
                  
                  
                                
                                
  
                      
Cf
?
Tableau completTableau étendu
Position dans le tableau périodique
SymboleCf
NomCalifornium
Numéro atomique98
Groupe
Période7e période
BlocBloc f
Famille d'élémentsActinide
Configuration électronique[Rn] 5f10 7s2
Électrons par niveau d’énergie2, 8, 18, 32, 28, 8, 2
Propriétés atomiques de l'élément
Masse atomique251 u
Rayon atomique (calc)186 ± 2 pm
Rayon de covalence225 pm
État d’oxydation2, 3, 4
Électronégativité (Pauling)1.3
Énergies d’ionisation[1]
1re : 6,281 7 eV2e : 11,8 eV
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
248Cf{syn.}333,5 jα
FS
6,361
244Cm
PF
249Cf{syn.}351 aα
FS
6,295
245Cm
PF
250Cf{syn.}13,08 aα
FS
6,128
246Cm
PF
251Cf{syn.}898 aα6,176247Cm
252Cf{syn.}2,645 aα
FS
6,217
248Cm
PF
253Cf{syn.}17,81 jβ-
α
0,285
6,124
253Es
249Cm
254Cf{syn.}60,5 jα
FS
5,926
250Cm
PF
Propriétés physiques du corps simple
État ordinaireSolide
Masse volumique15,1 g·cm-3[2]
Système cristallinHexagonal compact
CouleurArgentée
Point de fusion900 °C[2]
Point d’ébullition1 469,85 °C, 1 743
Divers
No CAS7440-71-3[3]
Précautions
Élément radioactif
Radioélément à activité notable

Unités du SI & CNTP, sauf indication contraire.

Le californium (symbole Cf) est l'élément chimique de numéro atomique 98. C'est un élément transuranien de la famille des actinides, radioactif et synthétique. Le corps simple est un métal dans les conditions normales de température et de pression.

Le californium trouve des applications comme amorce des réactions de fission dans les réacteurs nucléaires, dans le pilotage des centrales thermiques et des cimenteries en intervenant dans les sondes de contrôle de production, dans certaines radiothérapies, ainsi que dans l'exploration pétrolière.

Le californium est le sixième transuranien à avoir été synthétisé. Il a été produit pour la première fois en 1950 par Stanley G. Thompson, Glenn T. Seaborg, Kenneth Street, Jr. (en), et Albert Ghiorso à Berkeley, en Californie, d'où son nom : il avait alors été obtenu en bombardant une cible de curium 242 avec un faisceau de particules α pour produire du 245Cf par une réaction (α,n) :

242
96
Cm
+ 4
2
He
246
98
Cf*
245
98
Cf
+ 1
0
n
.

Occurrencemodifier

L'élément n'existe pas à l'état naturel sur Terre, en raison de sa demi-vie faible (900 ans ou moins selon les isotopes) par rapport à l'âge de la planète, tous les atomes qui pouvaient se trouver présents lors de la formation de la Terre se seraient désintégrés, et ne faisant pas partie des chaînes de désintégration naturelles il n'est pas renouvelé naturellement. Tous les atomes de californium présents sur Terre sont donc d'origine humaine.

Des traces de californium peuvent être trouvées à proximité d'installations utilisant l'élément en prospection minière et en médecine[4]. L'élément est difficilement soluble dans l'eau mais il adhère bien à un sol ordinaire (les concentrations de californium dans le sol peuvent être 500 fois plus importantes que dans l'eau entourant les particules de ce sol)[5].

Les retombées radioactives issues d'essais nucléaires atmosphériques antérieurs à 1980 sont à l'origine de la présence d'une petite quantité de californium dans l'environnement[5]. Les isotopes du californium de nombres de masse 249, 252, 253 et 254 ont été observés dans la poussière radioactive récoltée dans l'air après une explosion nucléaire[6].

Il a été supposé que le californium était produit par des supernovae, leurs désintégrations concordant avec la demi-vie de 60 jours de 254Cf[7]. Cependant, des études ultérieures ont échoué à montrer tout spectre du californium[8] et les courbes de lumière des supernovae sont maintenant présumées suivre la désintégration du nickel 56[9].

Formationmodifier

Le californium se forme dans les réacteurs nucléaires par captures neutroniques successives à partir d'uranium 238. L'étape intermédiaire est le berkélium 97Bk, qui peut donner du californium autant par capture neutronique que par désintégration β (à partir de l'isotope 249Bk).

L'isotope 251Cf a une section efficace de fission de 4 800 barn pour les neutrons thermiques, ce qui fait que la plupart des atomes fissionnent avant de capturer des neutrons supplémentaires, mais il en demeure néanmoins suffisamment pour que se forme du 252Cf dans le matériau nucléaire ; ce 252Cf se désintègre rapidement en une série d'isotopes du curium, lesquels sont susceptibles de redonner à leur tour du californium par capture neutronique.

Isotopesmodifier

L'isotope à la plus grande demi-vie est 251Cf avec une demi-vie d'environ 900 ans.

Propriétésmodifier

L'isotope 252Cf est un puissant émetteur de neutrons, ce qui le rend particulièrement dangereux. Chaque microgramme de 252Cf émet spontanément 2 314 000 neutrons par seconde[10], tandis qu'un gramme dégage 39 W de chaleur somme de la chaleur des désintégrations alpha et de celle émise par les fissions spontanées[11].Le taux de fissions spontanées par désintégration alpha est de 3,09 %; le nombre de neutrons émis est de 3,73 en moyenne par fission.

L'isotope 251Cf est connu pour sa faible masse critique, inférieure à 5 kg et même à peine 2 kg avec un réflecteur de neutrons comme l’acier[12]. Il serait en théorie possible de fabriquer une bombe atomique très compacte à base de cet isotope.

Utilisationsmodifier

Cet élément est utilisé dans divers domaines. Il améliore le contrôle du taux de fission nucléaire dans les réacteurs, permet des mesure des gisement dans l'industrie pétrolière. En médecine il est utilisé en neutronthérapie pour traiter les cellules cancéreuses[13].

Notes et référencesmodifier

  1. (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC, , 89e éd., p. 10-203
  2. a et b (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc, , 90e éd., 2804 p., Relié (ISBN 978-1-420-09084-0)
  3. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  4. Emsley 2001, p. 90.
  5. a et b (en) ANL contributors, « Human Health Fact Sheet: Californium » [PDF], Argonne National Laboratory,
  6. (en) P. R. Fields, M. Studier, H. Diamond, J. Mech, M. Inghram, G. Pyle, C. Stevens, S. Fried et W. Manning, « Transplutonium Elements in Thermonuclear Test Debris », Physical Review, vol. 102, no 1,‎ , p. 180–182 (DOI 10.1103/PhysRev.102.180, Bibcode 1956PhRv..102..180F)
  7. (en) W. Baade, Burbidge, G. R., Hoyle, F., Burbidge, E. M., Christy, R. F. et Fowler, W. A., « Supernovae and Californium 254 », Publications of the Astronomical Society of the Pacific, vol. 68, no 403,‎ , p. 296–300 (DOI 10.1086/126941, Bibcode 1956PASP...68..296B, lire en ligne, consulté le )
  8. (en) J. G. Conway, Hulet, E.K. et Morrow, R.J., « Emission Spectrum of Californium », Journal of the Optical Society of America, vol. 52,‎ (DOI 10.1364/josa.52.000222, lire en ligne, consulté le )
  9. Ruiz-Lapuente1996, p. 274.
  10. (en) R. C. Martin, J. B. Knauer, P. A. Balo, « Production, Distribution, and Applications of Californium-252 Neutron Sources », Applied Radiation and Isotopes, vol. 53, nos 4–5,‎ , p. 785–792 (DOI 10.1016/S0969-8043(00)00214-1, lire en ligne)
  11. Encyclopædia Britannica Transuranium Element – Nuclear Properties.
  12. Site de l'IRSN (Institut de Radioprotection et de Sureté Nucléaire)
  13. Yohan Demeure, « Ce métal blanc-argenté est 400 fois plus cher que l’or », sur sciencepost.fr, (consulté le )

Voir aussimodifier

Sur les autres projets Wikimedia :

Bibliographiemodifier

Liens externesmodifier


 12               3456789101112131415161718
1  H    He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8  119 120 *  
 * 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142  


Métaux alcalinsMétaux alcalino-terreuxLanthanidesMétaux de transitionMétaux pauvresMétalloïdesNon-métauxHalogènesGaz noblesÉléments non classés
Actinides
Superactinides
🔥 Top keywords: Cookie (informatique)Wikipédia:Accueil principalSpécial:RechercheGeorges PompidouMalika SorelBassirou Diomaye FayeYann BarthèsYassine BenziaKramer contre KramerDiabolo mentheInès RegGabriel AttalMacha MérilLe Problème à trois corpsRobert OppenheimerAimé JacquetChatGPTClaude PompidouAlain PompidouFichier:Cleopatra poster.jpgFrédéric MitterrandYouTubeSylvie VartanChloé ChaudoyeJordan BardellaLa Fille de l'assassin (téléfilm)Maladie et mort de Georges PompidouLes Douze Coups de midiChampionnat d'Europe de football 2024Pont Francis-Scott-Key (Baltimore)Ana GirardotBruno WolkowitchVahina GiocanteMaladie de WaldenströmÉléonore KlarweinBaltimoreSean CombsLamine YamalAya NakamuraJustin HenryEndrickFranceFlorence ForestiDustin HoffmanListe des meilleurs buteurs en équipe de France de footballNatasha St-PierFrançois SureauOlivier GiroudLe Problème à trois corps (série télévisée, 2024)RussiePâquesParc national de Doi InthanonCharles de GaulleXHamsterÉric CantonaRichard SerraOppenheimer (film)Catherine ParrDécès en mars 2024Quentin BataillonUn jour (film)François CivilMarie de HennezelKylian MbappéMarathons de BarkleyEffondrement du pont Francis-Scott-KeyValerie SolanasLionel MessiCristiano RonaldoÉdith PiafHenri VIIIAttentat du Crocus City HallSamir BoitardShōgun (série télévisée)Sondages sur les élections européennes de 2024GoogleTurquieHippolyte GirardotDominique CrennAffaire d'OutreauClaude AlphandéryMichel-AngeWilly SagnolCorée du NordCléopâtre VIILaurent AchardEmmanuel MacronAlbanieDoc (série télévisée, 2020)Ousmane SonkoLe Problème à trois corps (série télévisée)Romain AlessandriniAnthony DelonÉquipe de France de footballÉdouard PhilippeBrigade anonymeCamerounPrison du Dauphin noirMeryl Streep