Joback method

The Joback method[1] (often named Joback/Reid method) predicts eleven important and commonly used pure component thermodynamic properties from molecular structure only.

Basic principlesedit

Group-contribution methodedit

Principle of a group-contribution method

The Joback method is a group-contribution method. These kinds of methods use basic structural information of a chemical molecule, like a list of simple functional groups, add parameters to these functional groups, and calculate thermophysical and transport properties as a function of the sum of group parameters.

Joback assumes that there are no interactions between the groups, and therefore only uses additive contributions and no contributions for interactions between groups. Other group-contribution methods, especially methods like UNIFAC, which estimate mixture properties like activity coefficients, use both simple additive group parameters and group-interaction parameters. The big advantage of using only simple group parameters is the small number of needed parameters. The number of needed group-interaction parameters gets very high for an increasing number of groups (1 for two groups, 3 for three groups, 6 for four groups, 45 for ten groups and twice as much if the interactions are not symmetric).

Nine of the properties are single temperature-independent values, mostly estimated by a simple sum of group contribution plus an addend.Two of the estimated properties are temperature-dependent: the ideal-gas heat capacity and the dynamic viscosity of liquids. The heat-capacity polynomial uses 4 parameters, and the viscosity equation only 2. In both cases the equation parameters are calculated by group contributions.

Historyedit

The Joback method is an extension of the Lydersen method[2] and uses very similar groups, formulas, and parameters for the three properties the Lydersen already supported (critical temperature, critical pressure, critical volume).

Joback extended the range of supported properties, created new parameters and modified slightly the formulas of the old Lydersen method.

Model strengths and weaknessesedit

Strengthsedit

The popularity and success of the Joback method mainly originates from the single group list for all properties. This allows one to get all eleven supported properties from a single analysis of the molecular structure.

The Joback method additionally uses a very simple and easy to assign group scheme, which makes the method usable for people with only basic chemical knowledge.

Weaknessesedit

Systematic errors of the Joback method (normal boiling point)

Newer developments of estimation methods[3][4] have shown that the quality of the Joback method is limited. The original authors already stated themselves in the original article abstract: "High accuracy is not claimed, but the proposed methods are often as or more accurate than techniques in common use today."

The list of groups does not cover many common molecules sufficiently. Especially aromatic compounds are not differentiated from normal ring-containing components. This is a severe problem because aromatic and aliphatic components differ strongly.

The data base Joback and Reid used for obtaining the group parameters was rather small and covered only a limited number of different molecules. The best coverage has been achieved for normal boiling points (438 components), and the worst for heats of fusion (155 components). Current developments that can use data banks, like the Dortmund Data Bank or the DIPPR data base, have a much broader coverage.

The formula used for the prediction of the normal boiling point shows another problem. Joback assumed a constant contribution of added groups in homologous series like the alkanes. This doesn't describe the real behavior of the normal boiling points correctly.[5] Instead of the constant contribution, a decrease of the contribution with increasing number of groups must be applied. The chosen formula of the Joback method leads to high deviations for large and small molecules and an acceptable good estimation only for mid-sized components.

Formulasedit

In the following formulas Gi denotes a group contribution. Gi are counted for every single available group. If a group is present multiple times, each occurrence is counted separately.

Normal boiling pointedit

Melting pointedit

Critical temperatureedit

This critical-temperature equation needs a normal boiling point Tb. If an experimental value is available, it is recommended to use this boiling point. It is, on the other hand, also possible to input the normal boiling point estimated by the Joback method. This will lead to a higher error.

Critical pressureedit

where Na is the number of atoms in the molecular structure (including hydrogens).

Critical volumeedit

Heat of formation (ideal gas, 298 K)edit

Gibbs energy of formation (ideal gas, 298 K)edit

Heat capacity (ideal gas)edit

The Joback method uses a four-parameter polynomial to describe the temperature dependency of the ideal-gas heat capacity. These parameters are valid from 273 K to about 1000 K. But you are able to extend it to 1500K if you don't mind a bit of uncertainty here and there.

Heat of vaporization at normal boiling pointedit

Heat of fusionedit

Liquid dynamic viscosityedit

where Mw is the molecular weight.

The method uses a two-parameter equation to describe the temperature dependency of the dynamic viscosity. The authors state that the parameters are valid from the melting temperature up to 0.7 of the critical temperature (Tr < 0.7).

Group contributionsedit

GroupTcPcVcTbTmHformGformabcdHfusionHvapηaηb
Critical-state dataTemperatures
of phase transitions
Chemical caloric
properties
Ideal-gas heat capacitiesEnthalpies
of phase transitions
Dynamic viscosity
Non-ring groups
−CH30.0141−0.00126523.58−5.10−76.45−43.961.95E+1−8.08E−31.53E−4−9.67E−80.9082.373548.29−1.719
−CH20.01890.00005622.8811.27−20.648.42−9.09E−19.50E−2−5.44E−51.19E−82.5902.22694.16−0.199
>CH−0.01640.00204121.7412.6429.8958.36−2.30E+12.04E−1−2.65E−41.20E−70.7491.691−322.151.187
>C<0.00670.00432718.2546.4382.23116.02−6.62E+14.27E−1−6.41E−43.01E−7−1.4600.636−573.562.307
=CH20.0113−0.00285618.18−4.32−9.6303.772.36E+1−3.81E−21.72E−4−1.03E−7−0.4731.724495.01−1.539
=CH−0.0129−0.00064624.968.7337.9748.53−8.001.05E−1−9.63E−53.56E−82.6912.20582.28−0.242
=C<0.01170.00113824.1411.1483.9992.36−2.81E+12.08E−1−3.06E−41.46E−73.0632.138n. a.n. a.
=C=0.00260.00283626.1517.78142.14136.702.74E+1−5.57E−21.01E−4−5.02E−84.7202.661n. a.n. a.
≡CH0.0027−0.0008469.20−11.1879.3077.712.45E+1−2.71E−21.11E−4−6.78E−82.3221.155n. a.n. a.
≡C−0.00200.00163727.3864.32115.51109.827.872.01E−2−8.33E−61.39E-94.1513.302n. a.n. a.
Ring groups
−CH20.01000.00254827.157.75−26.80−3.68−6.038.54E−2−8.00E−6−1.80E−80.4902.398307.53−0.798
>CH−0.01220.00043821.7819.888.6740.99−2.05E+11.62E−1−1.60E−46.24E−83.2431.942−394.291.251
>C<0.00420.00612721.3260.1579.7287.88−9.09E+15.57E−1−9.00E−44.69E−7−1.3730.644n. a.n. a.
=CH−0.00820.00114126.738.132.0911.30−2.145.74E−2−1.64E−6−1.59E−81.1012.544259.65−0.702
=C<0.01430.00083231.0137.0246.4354.05−8.251.01E−1−1.42E−46.78E−82.3943.059-245.740.912
Halogen groups
−F0.0111−0.005727−0.03−15.78−251.92−247.192.65E+1−9.13E−21.91E−4−1.03E−71.398−0.670n. a.n. a.
−Cl0.0105−0.00495838.1313.55−71.55−64.313.33E+1−9.63E−21.87E−4−9.96E−82.5154.532625.45−1.814
−Br0.01330.00577166.8643.43−29.48−38.062.86E+1−6.49E−21.36E−4−7.45E−83.6036.582738.91−2.038
−I0.0068−0.00349793.8441.6921.065.743.21E+1−6.41E−21.26E−4−6.87E−82.7249.520809.55−2.224
Oxygen groups
−OH (alcohol)0.07410.01122892.8844.45−208.04−189.202.57E+1−6.91E−21.77E−4−9.88E−82.40616.8262173.72−5.057
−OH (phenol)0.02400.0184−2576.3482.83−221.65−197.37−2.811.11E−1−1.16E−44.94E−84.49012.4993018.17−7.314
−O− (non-ring)0.01680.00151822.4222.23−132.22−105.002.55E+1−6.32E−21.11E−4−5.48E−81.1882.410122.09−0.386
−O− (ring)0.00980.00481331.2223.05−138.16−98.221.22E+1−1.26E−26.03E−5−3.86E−85.8794.682440.24−0.953
>C=O (non-ring)0.03800.00316276.7561.20−133.22−120.506.456.70E−2−3.57E−52.86E−94.1898.972340.35−0.350
>C=O (ring)0.02840.00285594.9775.97−164.50−126.273.04E+1−8.29E−22.36E−4−1.31E−70.6.645n. a.n. a.
O=CH− (aldehyde)0.03790.00308272.2436.90−162.03−143.483.09E+1−3.36E−21.60E−4−9.88E−83.1979.093740.92−1.713
−COOH (acid)0.07910.007789169.09155.50−426.72−387.872.41E+14.27E−28.04E−5−6.87E−811.05119.5371317.23−2.578
−COO− (ester)0.04810.00058281.1053.60−337.92−301.952.45E+14.02E−24.02E−5−4.52E−86.9599.633483.88−0.966
=O (other than above)0.01430.010136−10.502.08−247.61−250.836.821.96E−21.27E−5−1.78E−83.6245.909675.24−1.340
Nitrogen groups
−NH20.02430.01093873.2366.89−22.0214.072.69E+1−4.12E−21.64E−4−9.76E−83.51510.788n. a.n. a.
>NH (non-ring)0.02950.00773550.1752.6653.4789.39−1.217.62E−2−4.86E−51.05E−85.0996.436n. a.n. a.
>NH (ring)0.01300.01142952.82101.5131.6575.611.18E+1−2.30E−21.07E−4−6.28E−87.4906.930n. a.n. a.
>N− (non-ring)0.01690.0074911.7448.84123.34163.16−3.11E+12.27E−1−3.20E−41.46E−74.7031.896n. a.n. a.
−N= (non-ring)0.0255-0.0099n. a.74.60n. a.23.61n. a.n. a.n. a.n. a.n. a.n. a.3.335n. a.n. a.
−N= (ring)0.00850.00763457.5568.4055.5279.938.83−3.84E-34.35E−5−2.60E−83.6496.528n. a.n. a.
=NHn. a.n. a.n. a.83.0868.9193.70119.665.69−4.12E−31.28E−4−8.88E−8n. a.12.169n. a.n. a.
−CN0.0496−0.010191125.6659.8988.4389.223.65E+1−7.33E−21.84E−4−1.03E−72.41412.851n. a.n. a.
−NO20.04370.006491152.54127.24−66.57−16.832.59E+1−3.74E−31.29E−4−8.88E−89.67916.738n. a.n. a.
Sulfur groups
−SH0.00310.00846363.5620.09−17.33−22.993.53E+1−7.58E−21.85E−4−1.03E−72.3606.884n. a.n. a.
−S− (non-ring)0.01190.00495468.7834.4041.8733.121.96E+1−5.61E−34.02E−5−2.76E−84.1306.817n. a.n. a.
−S− (ring)0.00190.00513852.1079.9339.1027.761.67E+14.81E−32.77E−5−2.11E−81.5575.984n. a.n. a.

Example calculationedit

Acetone (propanone) is the simplest ketone and is separated into three groups in the Joback method: two methyl groups (−CH3) and one ketone group (C=O). Since the methyl group is present twice, its contributions have to be added twice.

−CH3>C=O (non-ring)
PropertyNo. of groupsGroup valueNo. of groupsGroup value Estimated valueUnit
Tc
2
0.0141
1
0.0380
0.0662
500.5590
K
Pc
2
−1.20E−03
1
3.10E−03
7.00E−04
48.0250
bar
Vc
2
65.0000
1
62.0000
192.0000
209.5000
mL/mol
Tb
2
23.5800
1
76.7500
123.9100
322.1100
K
Tm
2
−5.1000
1
61.2000
51.0000
173.5000
K
Hformation
2
−76.4500
1
−133.2200
−286.1200
−217.8300
kJ/mol
Gformation
2
−43.9600
1
−120.5000
−208.4200
−154.5400
kJ/mol
Cp: a
2
1.95E+01
1
6.45E+00
4.55E+01
Cp: b
2
−8.08E−03
1
6.70E−02
5.08E−02
Cp: c
2
1.53E−04
1
−3.57E−05
2.70E−04
Cp: d
2
−9.67E−08
1
2.86E−09
−1.91E−07
Cp
at T = 300 K
75.3264
J/(mol·K)
Hfusion
2
0.9080
1
4.1890
6.0050
5.1250
kJ/mol
Hvap
2
2.3730
1
8.9720
13.7180
29.0180
kJ/mol
ηa
2
548.2900
1
340.3500
1436.9300
ηb
2
−1.7190
1
−0.3500
−3.7880
η
at T = 300 K
0.0002942
Pa·s

Referencesedit

  1. ^ Joback K. G., Reid R. C., "Estimation of Pure-Component Properties from Group-Contributions", Chem. Eng. Commun., 57, 233–243, 1987.
  2. ^ Lydersen A. L., "Estimation of Critical Properties of Organic Compounds", University of Wisconsin College Engineering, Eng. Exp. Stn. Rep. 3, Madison, Wisconsin, 1955.
  3. ^ Constantinou L., Gani R., "New Group Contribution Method for Estimating Properties of Pure Compounds", AIChE J., 40(10), 1697–1710, 1994.
  4. ^ Nannoolal Y., Rarey J., Ramjugernath J., "Estimation of pure component properties Part 2. Estimation of critical property data by group contribution", Fluid Phase Equilib., 252(1–2), 1–27, 2007.
  5. ^ Stein S. E., Brown R. L., "Estimation of Normal Boiling Points from Group Contributions", J. Chem. Inf. Comput. Sci. 34, 581–587 (1994).

External linksedit

🔥 Top keywords: Akademia e Shkencave e RPS te ShqiperiseAlexandria Ocasio-CortezBilderberg GroupCristiano RonaldoDong XiaowanMinecraftOperation GladioPrimal cutRiot FestStrictly Come Dancing (series 7)Main PageSpecial:SearchBaike: Requested articles/Business and economics/Companies/M-SIndian Premier LeagueFrancis Scott Key Bridge (Baltimore)Baike: Featured pictures2024 Indian Premier LeagueFrancis Scott Key Bridge collapseSean CombsNicole Shanahan3 Body Problem (TV series)PornhubJoe LiebermanThe Three-Body Problem (novel)XXXTentacionCleopatraYouTubeDan SchneiderDeaths in 2024MV DaliGodzilla x Kong: The New EmpireBrian PeckPorno y heladoSunrisers HyderabadUEFA Euro 2024Shōgun (2024 miniseries)Road House (2024 film)InstagramRonna McDanielDrake BellRobert F. Kennedy Jr.Francis Scott KeyAmanda BynesViral videoRobert HanssenBaltimoreBrandon ScottDune: Part TwoADX FlorenceFacebookTartanAditi Rao HydariSoaking (sexual practice)Ruby FrankeX-Men '97Cassie VenturaSunshine Skyway BridgeSergey Brin2024 Indian general electionList of Twenty20 cricket recordsSiddharth (actor)Portal Current eventsWinnie-the-Pooh: Blood and Honey 2Kalanithi MaranThree-body problemThe Gentlemen (2024 TV series)Kim PorterChatGPTJake GyllenhaalGhostbusters: Frozen EmpireWrestleMania XLKwena MaphakaPoor Things (film)2026 FIFA World Cup qualification (AFC)Dune (2021 film)United StatesWes MooreEndrick (footballer, born 2006)Maundy ThursdaySydney SweeneySolar eclipse of April 8, 2024Carol BurnettCrocus City Hall attackMadelyne PryorQuiet on Set: The Dark Side of Kids TVElin NordegrenKung Fu Panda 4SexCowboy CarterRed Eye (2005 American film)Battle of the HydaspesRyan GoslingFighter (2024 film)Eva MendesBattle of New CarthageImmaculate (2024 film)J. Robert OppenheimerArgentina national football teamShirley ChisholmTaylor SwiftLate Night with the DevilList of Indian Premier League records and statisticsRichard SerraTheo JamesNational September 11 Memorial & MuseumConor McGregorOppenheimer (film)Daniel KahnemanUEFA Euro 2024 qualifying